Biorefinery Approach for Cassava Peels: A Review
DOI:
https://doi.org/10.33102/mjosht.v8i2.230Keywords:
Biofuels; lignocellulosic biomass; cassava peels; chemical derivatives; pretreatmentsAbstract
Sustainability of energy has always become an issue globally as current energy supplies are depleting gradually. Humans were too dependent on natural gasses as a source of energy before, which brought us to this crisis as they are non-renewable energy and take up to a million years to recover. Not only that, prolonged utilization of this type of energy brought deterioration to our environment. Biofuels are one of the renewable energy sources that are favoured in the industry nowadays. They have the potential to replace non-renewable energy while simultaneously decrease the environmental damage. Sourced from various agricultural residues and other plant substances, lignocellulosic materials are capable of being converted to non-renewable energy due to their lavish availability through three basic steps, pre-treatments, enzymatic hydrolysis and fermentation. This review seeks to observe the prospect of cassava peels as a source for biofuels production and other value-added products such as formic acid, levulinic acid, glycolic acid and vanillin.
Downloads
References
K. A. Zahan and M. Kano, “Biodiesel production from palm oil, its by-products, and mill effluent: A review,” Energies (Basel), vol. 11, no. 8, pp. 1–25, 2018, doi: 10.3390/en11082132.
E. Fortunati, W. Yang, F. Luzi, J. Kenny, L. Torre, and D. Puglia, “Lignocellulosic nanostructures as reinforcement in extruded and solvent casted polymeric nanocomposites: an overview,” European Polymer Journal, vol. 80. Elsevier Ltd, pp. 295–316, Jul. 01, 2016. doi: 10.1016/j.eurpolymj.2016.04.013.
R. A. Lee and J. M. Lavoie, “From first- to third-generation biofuels: Challenges of producing a commodity from a biomass of increasing complexity,” Animal Frontiers, vol. 3, no. 2, pp. 6–11, 2013, doi: 10.2527/af.2013-0010.
E. I. Wiloso, R. Heijungs, and G. R. De Snoo, “LCA of second generation bioethanol: A review and some issues to be resolved for good LCA practice,” Renewable and Sustainable Energy Reviews, vol. 16, no. 7, pp. 5295–5308, 2012, doi: 10.1016/j.rser.2012.04.035.
S. Xiu, B. Zhang, and A. Shahbazi, “Biorefinery Processes for Biomass Conversion to Liquid Fuel,” Biofuel’s Engineering Process Technology, 2011, doi: 10.5772/16417.
B. Volynets, F. Ein-Mozaffari, and Y. Dahman, “Biomass processing into ethanol: Pretreatment, enzymatic hydrolysis, fermentation, rheology, and mixing,” Green Processing and Synthesis, vol. 6, no. 1, pp. 1–22, 2017, doi: 10.1515/gps-2016-0017.
S. Malherbe and T. E. Cloete, “Lignocellulose biodegradation: Fundamentals and applications,” Reviews in Environmental Science and Biotechnology, vol. 1, no. 2, pp. 105–114, 2002, doi: 10.1023/A:1020858910646.
S. Mohapatra, R. C. Ray, and S. Ramachandran, Bioethanol From Biorenewable Feedstocks: Technology, Economics, and Challenges. Elsevier Inc., 2019. doi: 10.1016/b978-0-12-813766-6.00001-1.
Agbarevo, M. N. Benjamin, and O.-S. Onyinyechi, “The Effect of Adoption of Cassava Value Added Technologies on Farmers’ Production in Abia State, Nigeria,” European Journal of Physical and Agricultural Sciences, vol. 3, no. 1, pp. 2056–5879, 2015.
N. J. Tonukari, “BIOTECHNOLOGY ISSUES FOR DEVELOPING COUNTRIES Cassava and the future of starch,” Electronic Journal of Biotechnology, vol. 7, no. 1, pp. 717–3458, 2004, doi: 10.4067/S0717-34582004000100003.
J. Kouakou, S. N. Nanga, C. Plagne Ismail, A. M. Pali, and K. E. Ognakossan, Cassava Production and Processing. Pro-Agro Collection, 2016.
C. Jansson, A. Westerbergh, J. Zhang, X. Hu, and C. Sun, “Cassava, a potential biofuel crop in China,” Applied Energy, vol. 86, no. SUPPL. 1, 2009, doi: 10.1016/J.APENERGY.2009.05.011.
F. Nartey, “Biosynthesis of cyanogenic glucosides in cassava (Manihot spp.),” undefined, 1973.
C. C. Chu, “Materials for absorbable and nonabsorbable surgical sutures,” Biotextiles As Medical Implants, pp. 275–334, 2013, doi: 10.1533/9780857095602.2.275.
C. Michelan, C. Scapinello, A. C. Furlan, E. N. Martins, H. G. de Faria, and M. A. Andreazzi, “Utilização da casca de mandioca desidratada na alimentação de coelhos,” Acta Scientiarum. Animal Sciences, vol. 28, no. 1, pp. 31–37, 2006, doi: 10.4025/actascianimsci.v28i1.662.
L. R. F. Souto, M. Caliari, M. S. Soares, F. A. Fiorda, And M. C. Garcia, “Utilization of residue from cassava starch processing for production of fermentable sugar by enzymatic hydrolysis,” Food Science and Technology, vol. 37, no. 1, pp. 19–24, Jun. 2016, doi: 10.1590/1678-457X.0023.
Z. Daud, H. Awang, A. S. M. Kassim, M. Z. M. Hatta, and A. M. Aripin, “Comparison of pineapple leaf and cassava peel by chemical properties and morphology characterization,” Advanced Materials Research, vol. 974, pp. 384–388, 2014, doi: 10.4028/www.scientific.net/AMR.974.384.
R. G. Witantri, T. Purwoko, Sunarto, and E. Mahajoeno, “Bioethanol Production By Utilizing Cassava Peels Waste Through Enzymatic And Microbiological Hydrolysis,” IOP Conference Series: Earth and Environmental Science, vol. 75, no. 1, p. 012014, Jul. 2017, doi: 10.1088/1755-1315/75/1/012014.
Laca, A. Laca, and M. Díaz, “Hydrolysis: From cellulose and hemicellulose to simple sugars,” in Second and Third Generation of Feedstocks, Elsevier, 2019, pp. 213–240. doi: 10.1016/b978-0-12-815162-4.00008-2.
S. Dahadha, Z. Amin, A. A. Bazyar Lakeh, and E. Elbeshbishy, “Evaluation of Different Pretreatment Processes of Lignocellulosic Biomass for Enhanced Biomethane Production,” Energy and Fuels, vol. 31, no. 10, pp. 10335–10347, Oct. 2017, doi: 10.1021/acs.energyfuels.7b02045.
J. Baruah et al., “Recent trends in the pretreatment of lignocellulosic biomass for value-added products,” Frontiers in Energy Research, vol. 6, no. DEC. Frontiers Media S.A., p. 141, Dec. 18, 2018. doi: 10.3389/fenrg.2018.00141.
Q. Kang, L. Appels, T. Tan, and R. Dewil, “Bioethanol from lignocellulosic biomass: Current findings determine research priorities,” Scientific World Journal, vol. 2014, Dec. 2014, doi: 10.1155/2014/298153.
A. Mohammed, S. B. Oyeleke, and E. C. Egwim, “Pretreatment and hydrolysis of cassava peels for fermentable sugar production,” Asian Journal of Biochemistry, vol. 9, no. 1, pp. 65–70, 2014, doi: 10.3923/ajb.2014.65.70.
H. V. Lee, S. B. A. Hamid, and S. K. Zain, “Conversion of lignocellulosic biomass to nanocellulose: Structure and chemical process,” Scientific World Journal, vol. 2014, 2014, doi: 10.1155/2014/631013.
M. Nauman Aftab, I. Iqbal, F. Riaz, A. Karadag, and M. Tabatabaei, “Different Pretreatment Methods of Lignocellulosic Biomass for Use in Biofuel Production,” Biomass for Bioenergy - Recent Trends and Future Challenges, pp. 1–24, 2019, doi: 10.5772/intechopen.84995.
J. S. Kim, Y. Y. Lee, and T. H. Kim, “A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass,” Bioresource Technology, vol. 199, pp. 42–48, 2016, doi: 10.1016/j.biortech.2015.08.085.
U. J. Ovueni, A. O. Jeje, and O. Y. Sadoh, “Effect of Acid and Alkali Pretreatments on the Structural and Compositional Properties of Cassava Peels,” International Journal of Scientific & Engineering Research, vol. 11, no. 5, pp. 116–121, 2020.
M. J. Taylor, H. A. Alabdrabalameer, and V. Skoulou, “Choosing physical, physicochemical and chemical methods of pre-treating lignocellulosic wastes to repurpose into solid fuels,” Sustainability (Switzerland), vol. 11, no. 13, 2019, doi: 10.3390/su11133604.
G. Jahnavi, G. S. Prashanthi, K. Sravanthi, and L. V. Rao, “Status of availability of lignocellulosic feed stocks in India: Biotechnological strategies involved in the production of Bioethanol,” Renewable and Sustainable Energy Reviews, vol. 73, no. November 2016, pp. 798–820, 2017, doi: 10.1016/j.rser.2017.02.018.
M. J. Taherzadeh and K. Karimi, “Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: A review,” International Journal of Molecular Sciences, vol. 9, no. 9. Multidisciplinary Digital Publishing Institute (MDPI), pp. 1621–1651, Sep. 2008. doi: 10.3390/ijms9091621.
M. Madadi, Y. Tu, and A. Abbas, “(PDF) Recent Status on Enzymatic Saccharification of Lignocellulosic Biomass for Bioethanol Production,” Electric Journal of Biology, vol. 13, no. 2, pp. 135–143, 2017.
R. Kumar, M. Tabatabaei, K. Karimi, and I. S. Horváth, “Recent updates on lignocellulosic biomass derived ethanol - A review,” Biofuel Research Journal, vol. 3, no. 1. Green Wave Publishing of Canada, pp. 347–356, Mar. 01, 2016. doi: 10.18331/BRJ2016.3.1.4.
R. Gupta et al., “Cellulases and their biotechnological applications,” Biotechnology for Environmental Management and Resource Recovery, pp. 89–106, Jan. 2013, doi: 10.1007/978-81-322-0876-1_6.
J. Pertanian and S. Malaysia, “Statistik Tanaman Sayur-Sayuran Dan Tanaman Ladang Malaysia,” 2017.
N. Abdullah and F. Sulaim, “The Oil Palm Wastes in Malaysia,” in Biomass Now - Sustainable Growth and Use, InTech, 2013. doi: 10.5772/55302.
W. Verheye, “Growth and Production of Oil Palm,” 2010. doi: 10.1017/CBO9781107415324.004.
L. M. Moore and J. H. Lawrence, “Plant guide – Cassava: Manihot esculenta Crantz. USDA NRCS National Plant Data Center, Washington D.C., USA,” 2003.
S. Palamae, P. Dechatiwongse, W. Choorit, Y. Chisti, and P. Prasertsan, “Cellulose and hemicellulose recovery from oil palm empty fruit bunch (EFB) fibers and production of sugars from the fibers,” Carbohydrate Polymers, vol. 155, pp. 491–497, Jan. 2017, doi: 10.1016/j.carbpol.2016.09.004.
Aripin, A. Kassim, Z. Daud, and M. Hatta, “Cassava Peels for Alternative Fibre in Pulp and Paper Industry: Chemical Properties and Morphology Characterization,” undefined, 2013.
O. O. Elechi, N. J. Tagbo, O. C. Mary, and A. O. Emmanuel, “Acid Hydrolysis Of Cassava Peel,” Acid Hydrolysis Of Cassava Peel, vol. 5, no. 1, pp. 184–187, 2016.
O. A. A and O. S. A, “Enhancing the Production of Reducing Sugars from Cassava Peels by Pretreatment Methods,” International Journal of Food Science and Technology, 2012.
R. Bayitse, X. Hou, A. B. Bjerre, and F. K. Saalia, “Optimisation of enzymatic hydrolysis of cassava peel to produce fermentable sugars,” AMB Express, vol. 5, no. 1, 2015, doi: 10.1186/s13568-015-0146-z.
V. Arantes and J. N. Saddler, “Access to cellulose limits the efficiency of enzymatic hydrolysis: The role of amorphogenesis,” Biotechnology for Biofuels, vol. 3, no. 1, pp. 1–11, 2010, doi: 10.1186/1754-6834-3-1.
“Formic acid production from palm oil empty fruit bunches — Universitas Indonesia.” https://scholar.ui.ac.id/en/publications/formic-acid-production-from-palm-oil-empty-fruit-bunches (accessed Jul. 17, 2021).
K. Yan, G. Wu, T. Lafleur, and C. Jarvis, “Production, properties and catalytic hydrogenation of furfural to fuel additives and value-added chemicals,” Renewable and Sustainable Energy Reviews, vol. 38, pp. 663–676, 2014, doi: 10.1016/j.rser.2014.07.003.
X. Liu, S. Li, Y. Liu, and Y. Cao, “Formic acid: A versatile renewable reagent for green and sustainable chemical synthesis,” Cuihua Xuebao/Chinese Journal of Catalysis, vol. 36, no. 9, pp. 1461–1475, Sep. 2015, doi: 10.1016/S1872-2067(15)60861-0.
S. Y. Park, C. Y. Hong, H. S. Jeong, S. Y. Lee, J. W. Choi, and I. G. Choi, “Improvement of lignin oil properties by combination of organic solvents and formic acid during supercritical depolymerization,” Journal of Analytical and Applied Pyrolysis, vol. 121, pp. 113–120, Sep. 2016, doi: 10.1016/J.JAAP.2016.07.011.
S. Achinas and G. J. W. Euverink, “Consolidated briefing of biochemical ethanol production from lignocellulosic biomass,” Electronic Journal of Biotechnology, vol. 23, pp. 44–53, 2016, doi: 10.1016/j.ejbt.2016.07.006.
B. Girisuta and H. J. Heeres, “Levulinic Acid from Biomass: Synthesis and Applications,” pp. 143–169, 2017, doi: 10.1007/978-981-10-4172-3_5.
S. Kang, J. Fu, and G. Zhang, “From lignocellulosic biomass to levulinic acid: A review on acid-catalyzed hydrolysis,” Renewable and Sustainable Energy Reviews, vol. 94. Elsevier Ltd, pp. 340–362, Oct. 01, 2018. doi: 10.1016/j.rser.2018.06.016.
J. Iglesias, I. Martínez-Salazar, P. Maireles-Torres, D. Martin Alonso, R. Mariscal, and M. López Granados, “Advances in catalytic routes for the production of carboxylic acids from biomass: A step forward for sustainable polymers,” Chemical Society Reviews, vol. 49, no. 16, pp. 5704–5771, 2020, doi: 10.1039/d0cs00177e.
R. G. Hill, “Biomedical polymers,” Biomaterials, Artificial Organs and Tissue Engineering, pp. 97–106, Jan. 2005, doi: 10.1533/9781845690861.2.97.
Z. Zhang, O. Ortiz, R. Goyal, and J. Kohn, “Biodegradable Polymers,” Principles of Tissue Engineering: Fourth Edition, pp. 441–473, 2013, doi: 10.1016/B978-0-12-398358-9.00023-9.
M. S. Noor Hasyierah, M. M. D. Zulkali, and K. I. Ku Syahidah, “Ferulic acid from lignocellulosic biomass - review.pdf,” Malaysian University Conferences on Engineering and Technology, no. March. pp. 1–8, 2008.
P. da and E. Dal Bello Coordinatore Dottorato Relatore Alejandro Hochkoeppler Fabio Fava, “Vanillin production from ferulic acid with Pseudomonas fluorescens BF13-1p4.”
N. Kumar and V. Pruthi, “Potential applications of ferulic acid from natural sources,” Biotechnology Reports, vol. 4, no. 1, pp. 86–93, 2014, doi: 10.1016/j.btre.2014.09.002.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Latiffah Karim
This work is licensed under a Creative Commons Attribution 4.0 International License.
The copyright of this article will be vested to author(s) and granted the journal right of first publication with the work simultaneously licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0) license, unless otherwise stated.