Production of Sugar from Cassava Peel using Different Chemical Pre-treatment


Total Views: 206 | Total Downloads: 208

Authors

  • Nuha Aqilah Zulkifli Faculty of Science and Technology, Universiti Sains Islam Malaysia (USIM), 71800, Negeri Sembilan, Malaysia.
  • Latiffah Karim Faculty of Science and Technology, Universiti Sains Islam Malaysia (USIM), 71800, Negeri Sembilan, Malaysia.

DOI:

https://doi.org/10.33102/mjosht.v9i2.358

Keywords:

cassava peel, acid and alkali pre-treatment, organosolv pre-treatment, sugar production

Abstract

Cassava peel has been a notable agricultural waste material to researchers because of its potential to produce sugar, a valuable product in the food, agricultural, and cosmetic industries. The peels constitute lignin, hemicellulose, and cellulose, also known as lignocellulosic biomass. Cassava peels must undergo a pre-treatment method to separate the lignocellulosic material effectively. This study aims to investigate the optimal chemical pre-treatment methods and optimal pre-treatment concentration to produce sugar from cassava peel. Cassava peels were pre-treated with sodium hydroxide, sulphuric acid, and methanol with a catalyst (organosolv). Then, enzymatic hydrolysis was performed using cellulase to hydrolyze cellulose to glucose. The glucose yield is quantified using Dinitrosalicylic Acid Assay and a portable blood glucometer. The results showed that pre-treatment using sodium hydroxide at a concentration of 0.05 M at 121°C for 15 minutes gave the highest glucose yield of 4.53±1.20 mg/ml. Glucose produced from 0.05 M sulphuric acid (H2SO4) and 0.2 M organosolv sodium methoxide (MeOH+NaOAc) were 3.55±0.68 mg/ml and 3.29±0.93 mg/ml, respectively. Statistical analysis showed that the effect of different pre-treatment methods and pre-treatment concentrations had a significant glucose yield (P<0.05). Similarly, there was a significant difference (P<0.05) in the glucose yield under different pre-treatment concentrations. Further study on mechanical-assisted chemical pre-treatment methods is recommended.

Downloads

Download data is not yet available.

References

Lu et al. "Study on quality characteristics of cassava flour and cassava flour short biscuits." Food Sci Nutr, vol. 8, no. 1, pp. 521–533, January 2020. doi: 10.1002/FSN3.1334.

Oghenejoboh, K. M., Orugba, H. O., Oghenejoboh, U. M., & Agarry, S. E. "Value-added cassava waste management and environmental sustainability in Nigeria: A review." Environmental Challenges, vol. 4, p. 100127, August 2021. doi: 10.1016/J.ENVC.2021.100127.

Olanbiwoninu, A. A., & Odunfa, S. A. "Production of Fermentable Sugars from Organosolv Pre-treated Cassava Peels." Adv Microbiol, vol. 5, no. 2, pp. 117–122, February 2015. doi: 10.4236/AIM.2015.52012.

Oyeleke, S. B., Dauda, B. E. N., Okoliegbe, I. N., & Ojebode, T. "Production of bioethanol from cassava and sweet potato peels." Adv Environ Biol, vol. 6, no. 1, pp. 241–245, 2012. Accessed: May 11, 2022.

Adetunji, O. R., Youdeowei, P. K., & Kolawole, O. O. "Production of bioethanol from cassava peel." International Conference on Renewable Energy and Power, vol. 1, 2015. Accessed: May 11, 2022.

Abidin, Z., Saraswati, E., & Naid, T. "Bioethanol production from waste of the cassava peel (Manihot esculenta) by acid hydrolysis and fermentation process." Int J Pharmtech Res, vol. 6, no. 4, pp. 1209–1212, 2014. Accessed: May 11, 2022.

Lounglawan, P., Khungaew, M., W. S.-J. Anim. Vet. Adv., and undefined 2011. "Silage production from cassava peel and cassava pulp as energy source in cattle diets." researchgate.net, 2011. doi: 10.3923/javaa.2011.1007.1011.

Pondja Jr., E. A., Persson, K. M., & Matsinhe, N. P. "The Potential Use of Cassava Peel for Treatment of Mine Water in Mozambique." J Environ Prot (Irvine, Calif), vol. 08, no. 03, pp. 277–289, 2017. doi: 10.4236/JEP.2017.83021.

Periathamby, A., Hamid, F. S., & Khidzir, K. "Evolution of solid waste management in Malaysia: Impacts and implications of the solid waste bill, 2007." J Mater Cycles Waste Manag, vol. 11, no. 2, pp. 96–103, May 2009. doi: 10.1007/S10163-008-0231-3.

Siddiqui, Y., & Naidu, Y. "Creating Wealth From Waste: Towards Sustainable Agriculture | INSTITUT KAJIAN PERLADANGAN (IKP)."

Daud, Z., Awang, H., Kassim, A. S. M., Hatta, M. Z. M., & Aripin, A. M. "Comparison of Pineapple Leaf and Cassava Peel by Chemical Properties and Morphology Characterization." Adv Mat Res, vol. 974, pp. 384–388, 2014. doi: 10.4028/WWW.SCIENTIFIC.NET/AMR.974.384.

Aderemi, F. A., & Nworgu, F. C. "Nutritional Status of Cassava Peels and Root Sieviate Biodegraded With Aspergillus niger." J. Agric. & Environ. Sci, vol. 2, no. 3, pp. 308–311, 2007.

City, B., Yeast, S., & Grades of T. "Chemical Composition of Cassava Peels Collected from Four Locations." International Journal of Science and Research, vol. 6, 2015. doi: 10.21275/ART20172389.

Ashokkumar, V., et al. "Recent advances in lignocellulosic biomass for biofuels and value-added bioproducts - A critical review." Bioresource Technology, vol. 344, Elsevier Ltd, January 01, 2022. doi: 10.1016/j.biortech.2021.126195.

Scheller, H. V., & Ulvskov, P. "Hemicelluloses.", vol. 61, pp. 263–289, May 2010. doi: 10.1146/ANNUREV-ARPLANT-042809-112315.

Khan, M. U., Usman, M., Ashraf, M. A., Dutta, N., Luo, G., & Zhang, S. "A review of recent advancements in pretreatment techniques of lignocellulosic materials for biogas production: Opportunities and Limitations." Chemical Engineering Journal Advances, vol. 10, May 2022. doi: 10.1016/J.CEJA.2022.100263.

Isikgor, F. H., & Becer, C. R. "Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers." Polym Chem, vol. 6, no. 25, pp. 4497–4559, June 2015. doi: 10.1039/C5PY00263J.

Canilha, L., et al. "Bioconversion of Sugarcane Biomass into Ethanol: An Overview about Composition, Pretreatment Methods, Detoxification of Hydrolysates, Enzymatic Saccharification, and Ethanol Fermentation." J Biomed Biotechnol, vol. 2012, p. 15, 2012. doi: 10.1155/2012/989572.

Phillips, E. "Lignocellulose-Degrading Microbes Give Plants New Life." Mar. 25, 2022.

Bredon, M., Dittmer, J., Noël, C., Moumen, B., & Bouchon, D. "Lignocellulose degradation at the holobiont level: teamwork in a keystone soil invertebrate." Microbiome 2018 6:1, vol. 6, no. 1, pp. 1–19, September 2018. doi: 10.1186/S40168-018-0536-Y.

Mtui, G. Y. S. "Recent advances in pretreatment of lignocellulosic wastes and production of value-added products." Afr J Biotechnol, vol. 8, no. 8, pp. 1398–1415, 2009. Accessed: May 27, 2022.

Bhaumik, P., & Dhepe, P. L. "Chapter 1 Conversion of Biomass into Sugars." RSC Green Chemistry, vol. 2016-January, no. 44, pp. 1–53, 2015. doi: 10.1039/9781782622079-00001.

Sivamani, S., Baskar, R., & Lakshmi, B. "Production of Fermentable Sugars from Cassava Stem using Hybrid Pretreatment Technology." Recent Progress in Materials 2021, Vol. 3, Page 1, vol. 3, no. 3, pp. 1–1, April 2021. doi: 10.21926/RPM.2103037.

Rezania, S., et al. "Different pretreatment technologies of lignocellulosic biomass for bioethanol production: An overview." Energy, vol. 199, p. 117457, May 2020. doi: 10.1016/J.ENERGY.2020.117457.

Prakesh, A., Dave, V., Sur, S., & Sharma, P. "Vivid techniques of pretreatment showing promising results in biofuel production and food processing." Journal of Food Process Engineering, vol. 44, no. 2, February 01, 2021. doi: 10.1111/jfpe.13580.

Mpho, S. M., Malgas, S., Bhattacharya, A., Rashamuse, K., & Pletschke, B. I. "The Effects of Alkaline Pretreatment on Agricultural Biomasses (Corn Cob and Sweet Sorghum Bagasse) and Their Hydrolysis by a Termite-Derived Enzyme Cocktail." Agronomy 2020, Vol. 10, Page 1211, vol. 10, no. 8, p. 1211, August 2020. doi: 10.3390/AGRONOMY10081211.

Baruah, J., et al. "Recent trends in the pretreatment of lignocellulosic biomass for value-added products." Frontiers in Energy Research, vol. 6, no. DEC, December 18, 2018. doi: 10.3389/fenrg.2018.00141.

Liu, C. G., Li, K., Wen, Y., Geng, B. Y., Liu, Q., & Lin, Y. H. Bioethanol: New opportunities for an ancient product, 1st ed., vol. 4. Elsevier Inc., 2019. doi: 10.1016/bs.aibe.2018.12.002.

Shah, A. A., Seehar, T. H., Sharma, K., & Toor, S. S. "Biomass pretreatment technologies." In Hydrocarbon Biorefinery, Elsevier, 2022, pp. 203–228. doi: 10.1016/B978-0-12-823306-1.00014-5.

Yoonan, K., & Kongkiattikajorn, J. "A Study of Optimal Conditions for Reducing Sugars Production from Cassava Peels by Diluted Acid and Enzymes," 2004.

Ahmad, E., & Pant, K. K. Lignin conversion: A key to the concept of lignocellulosic biomass-based integrated biorefinery. Elsevier B.V., 2018. doi: 10.1016/B978-0-444-63992-9.00014-8.

Fan, Z. "Consolidated Bioprocessing for Ethanol Production." In Biorefineries: Integrated Biochemical Processes for Liquid Biofuels, pp. 141–160, January 2014. doi: 10.1016/B978-0-444-59498-3.00007-5.

Prasanna, H. N., Ramanjaneyulu, G., & Rajasekhar Reddy, B. "Optimization of cellulase production by Penicillium sp." 3 Biotech, vol. 6, no. 2, December 2016. doi: 10.1007/s13205-016-0483-x.

Praveen, G., et al. "Cellulase production by Aspergillus niger on different natural lignocellulosic substrates," 2015.

Septiani, D. I. A., Suryadi, H., Mun’im, A., & Mangunwardoyo, W. "Production of cellulase from Aspergillus niger and Trichoderma reesei mixed culture in carboxymethylcellulose medium as sole carbon." Biodiversitas, vol. 20, no. 12, pp. 3539–3544, December 2019. doi: 10.13057/biodiv/d201211.

Kuhad, R. C., Gupta, R., & Singh, A. "Microbial cellulases and their industrial applications." Enzyme Research, vol. 2011, no. 1. 2011. doi: 10.4061/2011/280696.

Bhati, N. Shreya, & Sharma, A. K. "Cost-effective cellulase production, improvement strategies, and future challenges." Journal of Food Process Engineering, vol. 44, no. 2. Blackwell Publishing Inc., February 01, 2021. doi: 10.1111/jfpe.13623.

Imran, M., Anwar, Z., Irshad, M., Asad, M. J., & Ashfaq, H. "Cellulase Production from Species of Fungi and Bacteria from Agricultural Wastes and Its Utilization in Industry: A Review." Adv Enzyme Res, vol. 04, no. 02, pp. 44–55, 2016. doi: 10.4236/aer.2016.42005.

Zulkifli, Nur Najihah, & Karim, L. "Biorefinery Approach for Cassava Peels: A Review." Malaysian Journal of Science Health & Technology, vol. 8, no. 2, pp. 1–8, May 2022. doi: 10.33102/2022230.

Cotton, R. H., Rebers, P. A., Maudru, J. E., & Rorabaugh, G. "The Role of Sugar in the Food Industry." Advances in Chemistry, vol. 12, pp. 3–20, June 1955. doi: 10.1021/BA-1955-0012.CH001.

Nwalo, N. F., & Cynthia, A. O. "Glucose syrup production from cassava peels and cassava pulp." Int.J.Curr.Microbiol.App.Sci, vol. 3, no. 12, pp. 781–787, 2014. Accessed: May 29, 2022.

Agustin, F., Suryadi, E. H., & Jamarun, N. "The Use of Calcium Hydroxide with Different Soaking Time on Cassava Peel for Reducing HCN, and Its Effect on Rumen Fermentation," 2022.

Ayantunde, A. A., Niayale, R., & Addah, W. "Utilization of cassava peels as feed for ruminants in Ghana, A review of alternative methods of improving their nutritional value," 2019.

Soepratono, B., Budiarso, E., & Suwinarti, W. "Bioethanol Production From Cassava Peel By Ultrasonic Assisted Using HCl as Catalyst," International Journal of Scientific & Technology Research, vol. 8, pp. 146–148, March 2019. Accessed: May 30, 2022.

Baig, K. S., Wu, J., & Turcotte, G. "Future prospects of delignification pretreatments for the lignocellulosic materials to produce second generation bioethanol," International Journal of Energy Research. John Wiley and Sons Ltd, 2019. doi: 10.1002/er.4292.

Mardina, P., Irawan, C., Putra, M. D., Priscilla, S. B., Misnawati, M., & Nata, I. F. "Bioethanol Production from Cassava Peel Treated with Sulfonated Carbon Catalyzed Hydrolysis," Jurnal Kimia Sains dan Aplikasi, vol. 24, no. 1, pp. 1–8, February 2021. doi: 10.14710/JKSA.24.1.1-8.

Hermansyah, T., Xayasene, N., Huu Tho, N., Miksusanti, M., Fatma, F., & Panagan, A. T. "Bioethanol Production from Cassava (Manihot esculenta) Peel Using Yeast Isolated from Durian (Durio zhibetinus)," J Phys Conf Ser, vol. 1095, no. 1, p. 012016, September 2018. doi: 10.1088/1742-6596/1095/1/012016.

Haldar, D., & Purkait, M. K. "Lignocellulosic conversion into value-added products: A review," Process Biochemistry, vol. 89. Elsevier Ltd, pp. 110–133, February 01, 2020. doi: 10.1016/j.procbio.2019.10.001.

Banerjee, G., & Chattopadhyay, P. "Vanillin biotechnology: the perspectives and future," Journal of the Science of Food and Agriculture, vol. 99, no. 2. John Wiley and Sons Ltd, pp. 499–506, January 30, 2019. doi: 10.1002/jsfa.9303.

Yan, L., et al. "Biotransformation of ferulic acid to vanillin in the packed bed-stirred fermentors," Sci Rep, vol. 6, October 2016. doi: 10.1038/srep34644.

Safwan Alikasturi, A., et al. "Extraction of Glucose by Using Alkaline Hydrolysis from Musa Sapientum Peels, Ananas Comosus and Mangifera Indica Linn," Mater Today Proc, vol. 5, no. 10, pp. 22148–22153, January 2018. doi: 10.1016/J.MATPR.2018.07.083.

Olanbiwoninu, A., & Odunfa, S.A. "Enhancing the Production of Reducing Sugars from Cassava Peels by Pretreatment Methods," International Journal of Science and Technology, vol. 2, September 2012. Accessed: May 30, 2022.

Miller, G. L. "Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar." Anal Chem, vol. 31, no. 3, pp. 426–428, March 1959. doi: 10.1021/AC60147A030/ASSET/AC60147A030.FP.PNG_V03.

Yoo, E. H., & Lee, S. Y. "Glucose biosensors: An overview of use in clinical practice." Sensors, vol. 10, no. 5, pp. 4558–4576, May 2010. doi: 10.3390/s100504558.

Zhang, L., et al. "Portable glucose meter: trends in techniques and its potential application in analysis." Analytical and Bioanalytical Chemistry, vol. 411, no. 1. Springer Verlag, pp. 21–36, January 01, 2019. doi: 10.1007/s00216-018-1361-7.

Ona, J. I., Halling, P. J., & Ballesteros, M. "Enzyme hydrolysis of cassava peels: treatment by amylolytic and cellulolytic enzymes." Biocatal Biotransformation, vol. 37, no. 2, pp. 77–85, March 2019. doi: 10.1080/10242422.2018.1551376.

Bayitse, R., Hou, X., Bjerre, A. B., & Saalia, F. K. "Optimisation of enzymatic hydrolysis of cassava peel to produce fermentable sugars." AMB Express, vol. 5, no. 1, December 2015. doi: 10.1186/s13568-015-0146-z.

Witantri, R. G., Purwoko, T., Sunarto, & Mahajoeno, E. "Bioethanol Production by Utilizing Cassava Peels Waste Through Enzymatic and Microbiological Hydrolysis." IOP Conference Series: Earth and Environmental Science, August 2017, vol. 75, no. 1. doi: 10.1088/1755-1315/75/1/012014.

Wang, Z., Keshwani, D. R., Redding, A. P., & Cheng, J. J. "Sodium hydroxide pretreatment and enzymatic hydrolysis of coastal Bermuda grass." Bioresour Technol, vol. 101, no. 10, pp. 3583–3585, May 2010. doi: 10.1016/j.biortech.2009.12.097.

Phwan, C. K., et al. "Effects of acids pre-treatment on the microbial fermentation process for bioethanol production from microalgae." Biotechnol Biofuels, vol. 12, no. 1, July 2019. doi: 10.1186/s13068-019-1533-5.

Mardawati, E., Badruzaman, I., Kusuma, A. W., Putri, A. V., & Nurjanah, S. "Effect of organosolv pretreatment on delignification for bioethanol feedstock from oil palm empty fruit bunch (OPEFB)." IOP Conference Series: Earth and Environmental Science, December 2018, vol. 209, no. 1. doi: 10.1088/1755-1315/209/1/012009.

Liu, Y., Zhang, Y., Xu, J., Sun, Y., Yuan, Z., & Xie, J. "Consolidated bioprocess for bioethanol production with alkali-pretreated sugarcane bagasse." Appl Energy, vol. 157, pp. 517–522, November 2015. doi: 10.1016/j.apenergy.2015.05.004.

Wang, Q., et al. "Low-temperature sodium hydroxide pretreatment for ethanol production from sugarcane bagasse without washing process." Bioresour Technol, vol. 291, November 2019. doi: 10.1016/J.BIORTECH.2019.121844.

Nath, P., Maibam, P. D., Singh, S., Rajulapati, V., & Goyal, A. "Sequential pretreatment of sugarcane bagasse by alkali and organosolv for improved delignification and cellulose saccharification by chimera and cellobiohydrolase for bioethanol production." 3 Biotech, vol. 11, no. 2, February 2021. doi: 10.1007/s13205-020-02600-y.

Wang, X. "Pretreatment." in Advances in 2nd Generation of Bioethanol Production, Elsevier, 2021, pp. 87–112. doi: 10.1016/B978-0-12-818862-0.00011-X.

Ovueni, U. J., Jeje, A. O., & Sadoh, O. Y. "Effect of Acid and Alkali Pretreatments on the Structural and Compositional Properties of Cassava Peels." Int J Sci Eng Res, vol. 11, no. 5, 2020.

Dewiyanti, I., et al. "Cellulase enzyme activity of the bacteria isolated from mangrove ecosystem in Aceh Besar and Banda Aceh." in IOP Conference Series: Earth and Environmental Science, January 2022, vol. 951, no. 1. doi: 10.1088/1755-1315/951/1/012113.

Published

2023-09-12
CITATION
DOI: 10.33102/mjosht.v9i2.358
Published: 2023-09-12

How to Cite

Nuha Aqilah Zulkifli, & Latiffah Karim. (2023). Production of Sugar from Cassava Peel using Different Chemical Pre-treatment. Malaysian Journal of Science Health & Technology, 9(2), 136–146. https://doi.org/10.33102/mjosht.v9i2.358

Issue

Section

Food Science & Nutrition