Advanced Development of Bio-fertilizer Formulations Using Microorganisms as Inoculant for Sustainable Agriculture and Environment – A Review
DOI:
https://doi.org/10.33102/mjosht.v8i1.228Keywords:
Bio-fertilizer formulation, plant probiotics, sustainable agricultureAbstract
Conventional types of fertilizer such as chemical and synthetic fertilizers have demonstrated various adverse effects on the environment, crops, and humans. The utilization of plant probiotics as a bio-fertilizer in agriculture has been recognized to benefit the growth of the plant and inhibit the activity of plant pathogens. Traditional formulations of bio-fertilizer have provided insight into the beneficial use of microorganisms in crops. Despite its advantage to the environment, the effectiveness of traditional bio-fertilizer is common as compared to chemical fertilizer. Thus, a variety of bio-fertilizer formulations have been developed to improve the success rate of bio-fertilizer in increasing plant productivity. This review was focused on the development of bio-fertilizer formulation and the potential of bio-fertilizer to substitute chemical fertilizer application. In addition, this research review was also undertaken with a great demand on producing low cost and highly effective fertilizer without harming the environment and humans. Thus, the advantages and disadvantages of each formulation type have also been reviewed, emphasizing the perspective of bio-fertilizer and their suitability as bio-fertilizer as a substitute for chemical fertilizers in sustainable agriculture.
Downloads
References
N. Rawat, S. Wungrampha, S.L. Singla-Pareek, M. Yu, S. Shabala & A. Pareek, (2022). “Rewilding staple crops for the lost halophytism: Toward sustainability and profitability of agricultural production systems,” Molecular Plant, 15(1), 45-64. https://doi.org/10.1016/j.molp.2021.12.003
S. Komatsu, K. Saito & T. Sakurai, (2022). “Changes in production, yields, and the cropped area of lowland rice over the last 20 years and factors affecting their variations in Cote d`Ivoire,” Field Crops Research 277: 108424. https://doi.org/10.1016/j.fcr.2021.108424
P. Temniranrat, K. Kiratiratanapruk, A. Kitvimonrat, W. Sinthupinyo & S. Patarapuwadol, (2021). “A system for automatic rice disease detection from rice paddy images serviced via a Chatbot,” Computers and Electronics in Agriculture, 2021. 185: p. 106156. https://doi.org/10.1016/j.compag.2021.106156
Z. Jiang, Z. Dong, W. Jiang & Y. Yang, (2021). “Recognition of rice leaf diseases and wheat leaf diseases based on multi-task deep transfer learning,” Computers and Electronics in Agriculture, 186: p. 106184. https://doi.org/10.1016/j.compag.2021.106184
A. Abbas, S. Jain, M. Gour & S. Vankudothu, (2021). “Tomato plant disease detection using transfer learning with C-GAN synthetic images,” Computers and Electronics in Agriculture, 187: p. 106279. https://doi.org/10.1016/j.compag.2021.106279
P. Walerowski, A. Gundel, N. Yahaya, W. Truman, M.A. Sobczak, M. Olszak, S. Rolfe, L. Borisjuk & R. Malinowski, (2018). “Clubroot Disease Stimulates Early Steps of Phloem Differentiation and Recruits SWEET Sucrose Transporters within Developing Galls,” The Plant Cell, 30(12): p. 3058-3073. https://doi.org/10.1105/tpc.18.00283
T.A.T. Pham, J.G. Schwerdt, N.J. Shirley, X. Xing, Y.S.Y. Hsieh, V. Srivastava & V. Bulone, (2019). “A. Little, Analysis of cell wall synthesis and metabolism during early germination of Blumeria graminis f. sp. hordei conidial cells induced in vitro,” The Cell Surface, 5: p. 100030. https://doi.org/10.1016/j.tcsw.2019.100030
S. Castanheira, N. Mielnichuk & J. Perez-Martin, (2014). “Programmed cell cycle arrest is required for infection of corn plants by the fungus Ustilago maydis,” Development, 141(24): p. 4817-4826. https://doi.org/10.1242/dev.113415
J. Han, Y. Dong & M. Zhang, (2021). “Chemical fertilizer reduction with organic fertilizer effectively improve soil fertility and microbial community from newly cultivated land in the Loess Plateau of China,” Applied Soil Ecology, 165, 103966. https://doi.org/10.1016/j.apsoil.2021.103966
P. Vejan, T. Khadiran, R. Abdullah & N. Ahmad, (2021). “Controlled release fertilizer: A review on developments, applications and potential in agriculture,” Journal of Controlled Release, 339, 321-334. https://doi.org/10.1016/j.jconrel.2021.10.003
S. Nadarajan, S. Sukumaran, F.B. Lewu, T. Volova, S. Thomas & K.R, Rakhimol (2021). Chapter 12 - Chemistry and toxicology behind chemical fertilizers. Controlled Release Fertilizers for Sustainable Agriculture pp. 195-229: Academic Press.
O.A. Fasusi, C. Cruz & O.O. Babalola, (2021). “Agricultural Sustainability: Microbial Biofertilizers in Rhizosphere Management,” Agriculture, 11, 163. https://doi.org/10.3390/agriculture11020163
R. Ramachandran & J. Mourin, (2016). “Overview of the POPs pesticide situation in Malaysia,” International POPs Elimination Project, pp. 1–15.
H. Rozita, (2011). “Chlorpyrifos blood level and exposure symptoms among paddy farmers in Sabak Bernam, Malaysia,” International Journal of Public Health Research, vol.1, pp. 1–6, [Online]. Available at http://spaj.ukm.my/ijphr/index.php/ijphr/article/view/2.
N. Sharma & R. Singhvi, (2017). “Effects of Chemical Fertilizers and Pesticides on Human Health and Environment: A Review,” International Journal of Agriculture, Environment and Biotechnology, vol. 10, pp. 675. doi: 10.5958/2230-732X.2017.00083.3
J. S. Singh, V. C. Pandey & D. P. Singh, “Efficient soil microorganisms: A new dimension for sustainable agriculture and environmental development,” Agriculture, Ecosystems and Environment, vol. 140, pp. 339–353, 2011. https://doi.org/10.1016/j.agee.2011.01.017
E. Malusá & N. Vassilev, (2014) “A contribution to set a legal framework for biofertilizers,” Applied Microbiology and Biotechnology, vol. 98, pp. 6599–6607. doi: 10.1007/s00253-014-5828-y.
Y. Li, H. Li, X. Han, G. Han, J. Xi, Y. Liu, Y. Zhang, Q. Xue, Q. Guo & H. Lai, (2021). “Actinobacterial biofertilizer improves the yields of different plants and alters the assembly processes of rhizosphere microbial communities,” Applied Soil Ecology, 2021. 171: p. 104345. https://doi.org/10.1016/j.apsoil.2021.104345
N. Zainuddin, M.F. Keni, S.A.S. Ibrahim, & M.M.M. Masri, (2021). “Effect of integrated biofertilizers with chemical fertilizers on the oil palm growth and soil microbial diversity,” Biocatalysis and Agricultural Biotechnology, 39, 102237. https://doi.org/10.1016/j.bcab.2021.102237
M.S. Mahmud & K.P. Chong, (2021). “Formulation of biofertilizers from oil palm empty fruit bunches and plant growth-promoting microbes: A comprehensive and novel approach towards plant health,” Journal of King Saud University - Science, 33(8), 101647. https://doi.org/10.1016/j.jksus.2021.101647
J. Sakpirom, T. Nunkaew, E. Khan & D. Kantachote, (2021). “Optimization of carriers and packaging for effective biofertilizers to enhance Oryza sativa L. growth in paddy soil,” Rhizosphere, 19, 100383. https://doi.org/10.1016/j.rhisph.2021.100383
N. Bangash, S. Mahmood, S. Akhtar, M.T. Hayat, S. Gulzar & A. Khalid, (2021). “Formulation of biofertilizer for improving growth and yield of wheat in rain dependent farming system,” Environmental Technology & Innovation, 24, 101806. https://doi.org/10.1016/j.eti.2021.101806
S. Tyagi, R. K. Naresh, S. Prakash, G. Yadav, S. Tiwari, B. Rawat & N. Sharma, (2019). “Conservation agriculture, bio-fertilizers and biopesticides: A holistic approach for agricultural sustainability and food security: A review,” International Journal of Chemical Studies, vol. 7, pp. 3036–3046.
E. Menendez and P. Garcia-Fraile, (2017). “Plant probiotic bacteria: solutions to feed the world,” AIMS Microbiology, vol. 3, pp. 502–524. doi: 10.3934/microbiol.2017.3.502
S. Kumar, Diksha, S.S. Sindhu & R. Kumar, (2021). “Biofertilizers: An ecofriendly technology for nutrient recycling and environmental sustainability,” Current Research in Microbial Sciences, 3, 100094. https://doi.org/10.1016/j.crmicr.2021.100094
O.O. Babalola, (2010). “Beneficial bacteria of agricultural importance,” Biotechnology Letters, 32(11), 1559-1570. https://doi.org/10.1007/s10529-010-0347-0
B. Essalimi, S. Esserti, L.A. Rifai, T. Koussa, K. Makroum, M. Belfaiza, S. Rifai, J.S.p. Venisse, L. Faize, N. Alburquerque, L. Burgos, S.E. Jadoumi & M. Faize, (2021). “Enhancement of plant growth, acclimatization, salt stress tolerance and verticillium wilt disease resistance using plant growth-promoting rhizobacteria (PGPR) associated with plum trees (Prunus domestica),” Scientia Horticulturae, 291, 110621. https://doi.org/10.1016/j.scienta.2021.110621
S. Rahimi, M. Talebi, B. Baninasab, M. Gholami, M. Zarei & H. Shariatmadari, (2020). “The role of plant growth-promoting rhizobacteria (PGPR) in improving iron acquisition by altering physiological and molecular responses in quince seedlings,” Plant Physiology and Biochemistry, 155, 406-415. https://doi.org/10.1016/j.plaphy.2020.07.045
M. Boyer, R. Bally, S. Perrotto, C. Chaintreuil & F. Wisniewski-Dye, (2008). “A quorum-quenching approach to identify quorum-sensing-regulated functions in Azospirillum lipoferum,” Research in Microbiology, 159(9), 699-708. https://doi.org/10.1016/j.resmic.2008.08.003
S. Bukhat, A. Imran, S. Javaid, M. Shahid, A. Majeed & T. Naqqash, (2020). “Communication of plants with microbial world: Exploring the regulatory networks for PGPR mediated defense signalling,” Microbiological Research, 238, 126486. https://doi.org/10.1016/j.micres.2020.126486
A. Hartmann, (2020). “Quorum sensing N-acyl-homoserine lactone signal molecules of plant beneficial Gram-negative rhizobacteria support plant growth and resistance to pathogens,” Rhizosphere, 16, 100258. https://doi.org/10.1016/j.rhisph.2020.100258
I.-E. Marcano, C.-A. Diaz-Alcantara, B. Urbano, F. Gonzalez-Andres,(2016). “Assessment of bacterial populations associated with banana tree roots and development of successful plant probiotics for banana crop,” Soil Biology and Biochemistry, 99, 1-20. https://doi.org/10.1016/j.soilbio.2016.04.013
S. Kalam, A. Basu & A.R. Podile, (2020). “Functional and molecular characterization of plant growth promoting Bacillus isolates from tomato rhizosphere,” Heliyon, 6(8), e04734. https://doi.org/10.1016/j.heliyon.2020.e04734
G. Qi, S. Chen, L. Ke, G. Ma & X. Zhao, (2020). “Cover crops restore declining soil properties and suppress bacterial wilt by regulating rhizosphere bacterial communities and improving soil nutrient contents,” Microbiological Research, 238, 126505. https://doi.org/10.1016/j.micres.2020.126505
L. Xue, B. Sun, Y. Yang, B. Jin, G. Zhuang, Z. Bai & X. Zhuang, (2021). “Efficiency and mechanism of reducing ammonia volatilization in alkaline farmland soil using Bacillus amyloliquefaciens biofertilizer,” Environmental Research, 202, 111672. https://doi.org/10.1016/j.envres.2021.111672
G. Santoyo, (2021). “How plants recruit their microbiome? New insights into beneficial interactions,” Journal of Advanced Research. https://doi.org/10.1016/j.jare.2021.11.020
N. Bahareh, N. Bouaïcha, J.S. Metcalf, S.J. Porzani & O. Konur, (2021). “Plant-cyanobacteria interactions: Beneficial and harmful effects of cyanobacterial bioactive compounds on soil-plant systems and subsequent risk to animal and human health,” Phytochemistry, 192, 112959. doi: 10.1016/j.phytochem.2021.112959
P. Anubrata & D. Rajendra, (2014) “Isolation, characterization, production of bio-fertilizer and its effect on vegetable plants with and without carrier materials,” International Journal of Current Research, vol. 6, pp. 7986–7995.
A. N. Yadav, P. Verma, B. Singh, V. S. Chauhan, A. Suman & A. K. Saxena, (2017) “Plant growth promoting bacteria: biodiversity and multifunctional attributes for sustainable agriculture,” Advances in Biotechnology and Microbiology, vol. 5, pp. 1–16. doi: 10.19080/AIBM.2017.05.555671
T. Mahanty, S. Bhattacharjee, M. Goswami, P. Bhattacharyya, B. Das, A. Ghosh & P. Tribedi, (2017). “Bio-fertilizers: a potential approach for sustainable agriculture development,” Environmental Science and Pollution Research, vol. 24, pp. 3315–3335.
S. M. Nadeem, Z. A. Zahir, M. Naveed, H. N. Asghar & M. Arshad, (2010). “Rhizobacteria capable of producing ACC-deaminase may mitigate salt stress in wheat,” Soil Science Society of America Journal, vol. 74, pp. 533–542. https://doi.org/10.2136/sssaj2008.0240
R. Kumar, N. Kumawat & Y. K. Sahu, (2017). “Role of bio-fertilizers in agriculture,” Pop Kheti, vol. 5, pp. 63–66.
J. U. Itelima, W. J. Bang, I. A. Onyimba, M. D. Sila & O. J. Egbere, (2018). “Bio-fertilizers as key player in enhancing soil fertility and crop productivity: A review,” Direct Research Journal of Agriculture and Food Science, vol. 6, pp. 73–83.
C. Leaungvutiviroj, P. Ruangphisarn, P. Hansanimitkul, H. Shinkawa & K. Sasaki, (2010). “Development of a new bio-fertilizer with a high capacity for N2 fixation, phosphate and potassium solubilization and auxin production,” Bioscience, Biotechnology and Biochemistry, vol. 74, pp. 1098–1101. https://doi.org/10.1271/bbb.90898
M. Abdel-Salam & A. Shams, (2012). “Feldspar-K fertilization of potato (Solanum tuberosum L.) augmented by bio-fertilizer,” Journal of Agriculture and Environmental Sciences, vol. 12, pp. 694–699. doi: 10.5829/idosi.aejaes.2012.12.06.1802
H. T. Tam & C. N. Diep, (2017). “Isolation and characterization of bacteria of mangrove rhizosphere in the Mekong Delta, Vietnam,” International Journal of Innovations in Engineering and Technology, vol. 9.
J. Dighton, (2009) “Mycorrhizae,” In Encyclopedia of Microbiology, Elsevier Inc. pp. 153–162. doi: 10.1016/B978-012373944-5.00327-8
P. I. Djighaly, N. Diagne, M. Ngom, D. Ngom, V. Hocher, D. Fall, D. Diouf, L. Laplaze, S. Svistoonoff & A. Champion, (2018). “Selection of arbuscular mycorrhizal fungal strains to improve Casuarina equisetifolia L. and Casuarina glauca Sieb. tolerance to salinity,” Annals of Forest Science, vol. 75, pp. 1–11. doi: 10.1007/s13595-018-0747-1
E. Malusá, L. Sas-Paszt & J. Ciesielska, (2012). “Technologies for beneficial microorganisms inocula used as bio-fertilizers,” The Scientific World Journal, 2012. https://doi.org/10.1100/2012/491206
Y. Bashan, (1998). “Inoculants of plant growth-promoting bacteria for use in agriculture,” Biotechnology Advances, vol. 16, pp. 729–770. https://doi.org/10.1016/S0734-9750(98)00003-2
C. Badgley, J. Moghtader, E. Quintero, E. Zakem, M. J. Chappell, K. Aviles-Vazquez, A. Samulon & I. Perfecto, (2007). “Organic agriculture and the global food supply,” Renewable Agriculture and Food Systems, pp. 86–108. doi: 10.1017/S1742170507001640
D. Kantachote, K. Kowpong, W. Charernjiratrakul & A. Pengnoo, (2009). “Microbial succession in a fermenting of wild forest noni (Morinda coreia Ham) fruit plus molasses and its role in producing a liquid fertilizer,” Electronic Journal of Biotechnology, vol. 12, pp. 9–10. http://dx.doi.org/10.4067/S0717-34582009000300009
R. Anandham, N. Premalatha, H.J. Jee, H.Y. Weon, S.W. Kwon, R. Krishnamoorthy, P.I. Gandhi, Y.K. Kim & N.O. Gopal, (2015). “Cultivable bacterial diversity and early plant growth promotion by the traditional organic formulations prepared using organic waste materials,” International Journal of Recycling of Organic Waste in Agriculture, 4(4), 279-289. https://doi.org/10.1007/s40093-015-0107-1
T. Phibunwatthanawong & N. Riddech, (2019). “Liquid organic fertilizer production for growing vegetables under hydroponic condition,” International Journal of Recycling of Organic Waste in Agriculture, 8(4), 369-380. https://doi.org/10.1007/s40093-019-0257-7
E. L. D. Amalraj, G. P. Kumar, S. K. M. H. Ahmed, R. Abdul & N. Kishore, (2013). “Microbiological analysis of panchagavya, vermicompost, and FYM and their effect on plant growth promotion of pigeon pea (Cajanus cajan L.) in India.” Organic Agriculture, vol. 3, pp. 23-29. https://doi.org/10.1007/s13165-013-0042-2
A.N. Nikitin, I.A. Cheshyk, G.Z. Gutseva, E.A. Tankevich, M. Shintani & S. Okumoto, (2018). “Impact of effective microorganisms on the transfer of radioactive cesium into lettuce and barley biomass,” Journal of Environmental Radioactivity, 192, 491-497. https://doi.org/10.1016/j.jenvrad.2018.08.005
R. Anandham, N. Premalatha, H. J. Jee, H. Y. Weon, S. W. Kwon, R. Krishnamoorthy, P. I. Gandhi, Y. K. Kim & N. O. Gopal, (2015). “Cultivable bacterial diversity and early plant growth promotion by the traditional organic formulations prepared using organic waste materials,” International Journal of Recycling of Organic Waste in Agriculture, vol. 4, pp. 279–289. https://doi.org/10.1007/s40093-015-0107-1
M. S. Santos, M. A. Nogueira & M. Hungria, (2019). “Microbial inoculants: reviewing the past, discussing the present and previewing an outstanding future for the use of beneficial bacteria in agriculture,” AMB Express, vol. 9. https://doi.org/10.1186/s13568-019-0932-0
R. de Souza, A. Ambrosini & L. M. P. Passaglia, (2015). “Plant growth-promoting bacteria as inoculants in agricultural soils,” Genetics and Molecular Biology, vol. 38, pp. 401–419. https://doi.org/10.1590/S1415-475738420150053
M. Rahman, M. Rahman, A. A. Sabir, J. A. Mukta, M. M. A. Khan, M. Mohi-Ud-Din, M. G. Miah, M. Rahman & M. T. Islam, (2018). “Plant probiotic bacteria Bacillus and Paraburkholderia improve growth, yield and content of antioxidants in strawberry fruit,” Scientific Reports, vol. 8, pp. 1–11. https://doi.org/10.1038/s41598-018-20235-1
P. Chop, K. Hoe & K. A. Rahim, (2020). “Multifunctional liquid bio-fertilizer as an innovative agronomic input for modern agriculture,” In Conference: Research and Development Seminar, pp. 1–4.
G. P. Santhosh, (2015). “Formulation and shelf life of liquid bio-fertilizer inoculants using cell protectants,” International Journal of Researches in Biosciences, Agriculture and Technology, vol. 2, pp. 243–247.
P. Sahu & G. P. Brahmaprakash, (2016). “Formulations of Bio-fertilizers – Approaches and Advances,” In D. P. Singh, H. B. Singh, and R. Prabha (Eds.), Microbial Inoculants in Sustainable Agricultural Productivity, New Delhi: Springer, pp. 179–198. https://doi.org/10.1007/978-81-322-2644-4_12
S. Shanmugam, (2015). “Granulation techniques and technologies: recent progresses,” BioImpacts: BI, 5(1), 55-63. doi: 10.15171/bi.2015.04
Y. Bashan, L. E. De-Bashan, S. R. Prabhu & J.-P. Hernandez, (2014). “Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013),” Plant and Soil, vol. 378, pp. 1–33. https://doi.org/10.1007/s11104-013-1956-x
L. Herrmann & D. Lesueur, (2013). “Challenges of formulation and quality of bio-fertilizers for successful inoculation,” Applied Microbiology and Biotechnology, vol. 97, pp. 8859–8873. https://doi.org/10.1007/s00253-013-5228-8
G. W. Clayton, W. A. Rice, N. Z. Lupwayi, A. M. Johnston, G. P. Lafond, C. A. Grant & F. Walley, (2004). “Inoculant formulation and fertilizer nitrogen effects on field pea: Nodulation, N2 fixation and nitrogen partitioning,” Canadian Journal of Plant Science, vol. 84, pp. 79–88. https://doi.org/10.4141/P02-089
R. Anandham, K. H. Choi, P. I. Gandhi, W. J. Yim, S. J. Park, K. A. Kim, M. Madhaiyan & T. M. Sa, (2007). “Evaluation of shelf life and rock phosphate solubilization of Burkholderia sp. in nutrient-amended clay, rice bran and rock phosphate-based granular formulation,” World Journal of Microbiology and Biotechnology, vol. 23, pp. 1121–1129. https://doi.org/10.1007/s11274-006-9342-y
V.F. Majaron, M.G. da Silva, R. Bortoletto-Santos, R. Klaic, A. Giroto, G.G.F. Guimaraes, W.L. Polito, C.S. Farinas & C. Ribeiro, (2020). “Synergy between castor oil polyurethane/starch polymer coating and local acidification by A. niger for increasing the efficiency of nitrogen fertilization using urea granules,” Industrial Crops and Products, 154, 112717. https://doi.org/10.1016/j.indcrop.2020.112717
B. K. W. Pathirana & P. N. Yapa, (2020). “Evaluation of different carrier substances for the development of an effective pelleted bio-fertilizer for rice (Oryza sativa L.) using co-inoculated bacteria and arbuscular mycorrhizal fungi,” Asian Journal of Biotechnology and Bioresource Technology, 1–10. doi: 10.9734/ajb2t/2020/v6i130070
M. M. Haque, G. Ilias & A. Molla, (2012). “Impact of Trichoderma-enriched bio-fertilizer on the growth and yield of mustard (Brassica rapa L.) and tomato (Solanum lycopersicon Mill.),” The Agriculturists, vol. 10, pp. 109–119. https://doi.org/10.1007/s40003-012-0025-7
M. Stella, M. Theeba & Z. I. Illani, (2019). “Organic fertilizer amended with immobilized bacterial cells for extended shelf-life,” Biocatalysis and Agricultural Biotechnology, vol. 20, pp.101248. https://doi.org/10.1016/j.bcab.2019.101248
J. Sakpirom, T. Nunkaew, E. Khan & D. Kantachote, (2021). “Optimization of carriers and packaging for effective biofertilizers to enhance Oryza sativa L. growth in paddy soil,” Rhizosphere, 19, 100383. https://doi.org/10.1016/j.rhisph.2021.100383
N. Vassilev, M. Vassileva, A. Lopez, V. Martos, A. Reyes, I. Maksimovic, B. Eichler-Lobermann & E. Malusà, (2015). “Unexploited potential of some biotechnological techniques for bio-fertilizer production and formulation,” Applied Microbiology and Biotechnology. Springer Verlag. https://doi.org/10.1007/s00253-015-6656-4
M. M. Pour, R. Saberi-Riseh, R. Mohammadinejad & A. Hosseini, (2019). “Investigating the formulation of alginate- gelatin encapsulated Pseudomonas fluorescens (VUPF5 and T17-4 strains) for controlling Fusarium solani on potato,” International Journal of Biological Macromolecules, vol. 133, pp. 603–613. https://doi.org/10.1016/j.ijbiomac.2019.04.071
E. Ivanova, E. Teunou & D. Poncelet, (2005). “Alginate based macrocapsules as inoculants carriers for production of nitrogen bio-fertilizers. In Proceeding of the Balkan Scientific Conference of Biology. Plovdiv, Vol. 2005, pp. 90–108. https://doi.org/10.2298/CICEQ0601031I
N. Bharti, S. K. S. Sharma, S. Saini, A. Verma, Y. Nimonkar & O. Prakash, (2017). “Microbial plant probiotics: problems in application and formulation,” In Probiotics and Plant Health, pp. 317–335, Springer. doi: 10.1007/978-981-10-3473-2_13
A. C. Oluwaseun, P. Phazang & N. B. Sarin, (2018). “Production of ecofriendly bio-fertilizers produced from crude and immobilized enzymes from Bacillus subtilis CH008 and their effect on the growth of Solanum lycopersicum,” Plant Archives, vol. 18, pp. 1455–1462.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Nazariyah Yahaya
This work is licensed under a Creative Commons Attribution 4.0 International License.
The copyright of this article will be vested to author(s) and granted the journal right of first publication with the work simultaneously licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0) license, unless otherwise stated.