Soil Microbiome and Banana Plant Diseases: A Review

Total Views: 392 | Total Downloads: 278


  • Nur Aina Mardhiah Zolkhairi Faculty of Science and Technology, Universiti Sains Islam Malaysia, Bandar Baru Nilai, 71800 Nilai, Malaysia
  • Ismatul Nurul Asyikin Ismail Faculty of Science and Technology, Universiti Sains Islam Malaysia, Bandar Baru Nilai, 71800 Nilai, Malaysia



Soil microbiome, Banana plant disease


Soil microbiomes not only benefits the ecosystem, such as facilitating nitrogen cycling, but they can also cause unhealthy plant or even death since some of the microbes are pathogens. The crops yield will significantly decrease if the pathogens are still assembled in the soil, which could cause losses to farmers. Previous studies have acknowledged several aspects of the roles of soil microbiome and how soil variations can affect the availability and functions of the microbes. Banana is one of the most popular, commonly consumed, and essential fruit crops worldwide. Nevertheless, the accumulation of pathogenic microorganisms as primary inhabitants in the soil become a main limiting factor in banana crops production. With current studies and technologies, the disease caused by pathogenic microbes in the soil can be controlled. The scope of this review is on soil microbiomes that contribute to banana plant diseases and the methods to control the disease.


Download data is not yet available.


Kalev, S. D., & Toor, G. S. (2018). The Composition of Soils and Sediments. Green Chemistry: An Inclusive Approach, 339–357.

Schoonover, J. E., & Crim, J. F. (2015). An Introduction to Soil Concepts and the Role of Soils in Watershed Management. Journal of Contemporary Water Research & Education, 154(1), 21–47.

Thakur, M. P., & Geisen, S. (2019). Trophic Regulations of the Soil Microbiome. Trends in Microbiology, 27(9), 771–780.

Rasmussen, P. U., Bennett, A. E., & Tack, A. J. M. (2020). The impact of elevated temperature and drought on the ecology and evolution of plant-soil microbe interactions. Journal of Ecology, 108(1), 337–352.

Mohiuddin, A., Saha, M. K., Hossian, M. S., & Ferdoushi, A. (2014). Usefulness of Banana (Musa paradisiaca) Wastes in Manufacturing of Bio-products: A Review. The Agriculturists, 12(1), 148–158.

Abdullah, N., Sulaiman, F., & Taib, R. M. (2013). Characterisation of banana (Musa spp.) plantation wastes as a potential renewable energy source. AIP Conference Proceedings, 1528, 325–330.

Abdulkadir, Mohamed. (2016). Chapter two: Soil physical properties. pp. 27–62.

Hatfield, J. L., Sauer, T. J., & Cruse, R. M. (2017). Soil: The Forgotten Piece of the Water, Food, Energy Nexus. In Advances in Agronomy (Vol. 143, pp. 1–46). Academic Press Inc.

Schlatter, D. C., Kahl, K., Carlson, B., Huggins, D. R., & Paulitz, T. (2020). Soil acidification modifies soil depth-microbiome relationships in a no-till wheat cropping system. Soil Biology and Biochemistry, 149 (February), 107939.

Gelybó, G., Tóth, E., Farkas, C., Horel, Kása, I., & Bakacsi, Z. (2018). Potential impacts of climate change on soil properties. Agrokemia Es Talajtan, 67(1), 121–141.

Jansson, J. K., & Hofmockel, K. S. (2018). The soil microbiome — from metagenomics to metaphenomics. Current Opinion in Microbiology, 43, 162–168.

Yang, R., Su, Y. Z., Wang, T., & Yang, Q. (2016). Effect of chemical and organic fertilisation on soil carbon and nitrogen accumulation in a newly cultivated farmland. Journal of Integrative Agriculture, 15(3), 658–666.

Zhao, Z. B., He, J. Z., Quan, Z., Wu, C. F., Sheng, R., Zhang, L. M., & Geisen, S. (2020). Fertilisation changes soil microbiome functioning, especially phagotrophic protists. Soil Biology and Biochemistry, 148(April), 107863.

Ling, N., Zhu, C., Xue, C., Chen, H., Duan, Y., Peng, C., Guo, S., & Shen, Q. (2016). Insight into how organic amendments can shape the soil microbiome in long-term field experiments as revealed by network analysis. Soil Biology and Biochemistry, 99, 137–149.

Anzuay, M. S., Frola, O., Angelini, J. G., Ludueña, L. M., Ibañez, F., Fabra, A., & Taurian, T. (2015). Effect of pesticides application on peanut (Arachis hypogaea L.) associated phosphate solubilising soil bacteria. Applied Soil Ecology, 95, 31–37.

Wang, C. N., Wu, R. L., Li, Y. Y., Qin, Y. F., Li, Y. L., Meng, F. Q., Wang, L. G., & Xu, F. L. (2020). Effects of pesticide residues on bacterial community diversity and structure in typical greenhouse soils with increasing cultivation years in Northern China. Science of the Total Environment, 710, 136321.

Wang, X., Lu, Z., Miller, H., Liu, J., Hou, Z., Liang, S., Zhao, X., Zhang, H., & Borch, T. (2020). Fungicide azoxystrobin induced changes on the soil microbiome. Applied Soil Ecology, 145(May 2019), 103343.

Teng, Y., & Chen, W. (2019). Soil Microbiomes—a Promising Strategy for Contaminated Soil Remediation: A Review. Pedosphere, 29(3), 283–297.

García-Jiménez, B., & Wilkinson, M. D. (2019). Robust and automatic definition of microbiome states. PeerJ, 2019(3), e6657.

Schlatter, D., Kinkel, L., Thomashow, L., Weller, D., & Paulitz, T. (2017). Disease suppressive soils: New insights from the soil microbiome. In Phytopathology (Vol. 107, Issue 11, pp. 1284–1297). American Phytopathological Society.

Berg, G., Rybakova, D., Fischer, D., Cernava, T., Vergès, M. C. C., Charles, T., Chen, X., Cocolin, L., Eversole, K., Corral, G. H., Kazou, M., Kinkel, L., Lange, L., Lima, N., Loy, A., Macklin, J. A., Maguin, E., Mauchline, T., McClure, R., … Schloter, M. (2020). Microbiome definition re-visited: old concepts and new challenges. Microbiome, 8(1), 1–22.

Eichorst, S. A., Breznak, J. A., & Schmidt, T. M. (2007). Isolation and characterisation of soil bacteria that define Terriglobus gen. nov., in the phylum Acidobacteria. Applied and Environmental Microbiology, 73(8), 2708–2717.

Sudarma, I. M., & Suprapta, D. N. (2011). Diversity of soil microorganisms in banana habitats with and without fusarium wilt symptom. International Society for Southeast Asian Agricultural Sciences. 17(1), 147–159.

Bakker, P. A. H. M., Berendsen, R. L., Van Pelt, J. A., Vismans, G., Yu, K., Li, E., Van Bentum, S., Poppeliers, S. W. M., Sanchez Gil, J. J., Zhang, H., Goossens, P., Stringlis, I. A., Song, Y., de Jonge, R., & Pieterse, C. M. J. (2020). The Soil-Borne Identity and Microbiome-Assisted Agriculture: Looking Back to the Future. Molecular Plant, 13(10), 1394–1401.

Qiu, S. C., Jiang, J., Liu, X., Chen, M., & Yuan, X. (2020). Actinomycetes – The microbial machinery for the organic-cycling, plant growth, and sustainable soil health. International Journal of Hospitality Management, 102759.

Geisseler, D., Linquist, B. A., & Lazicki, P. A. (2017). Effect of fertilisation on soil microorganisms in paddy rice systems – A meta-analysis. Soil Biology and Biochemistry, 115, 452–460.

Eilers, K. G., Debenport, S., Anderson, S., & Fierer, N. (2012). Digging deeper to find unique microbial communities: The strong effect of depth on the structure of bacterial and archaeal communities in soil. Soil Biology and Biochemistry, 50, 58–65.

Lakshmanan, V., Selvaraj, G., & Bais, H. P. (2014). Functional soil microbiome: Belowground solutions to an aboveground problem. Plant Physiology, 166(2), 689–700.

Hong, S., Jv, H., Lu, M., Wang, B., Zhao, Y., & Ruan, Y. (2020). Significant decline in banana Fusarium wilt disease is associated with soil microbiome reconstruction under chilli pepper-banana rotation. European Journal of Soil Biology, 97(August 2019), 103154.

Lupatini, M., Korthals, G. W., de Hollander, M., Janssens, T. K. S., & Kuramae, E. E. (2017). Soil microbiome is more heterogeneous in organic than in conventional farming system. Frontiers in Microbiology, 7(JAN).

Jacoby, R., Peukert, M., Succurro, A., Koprivova, A., & Kopriva, S. (2017). The role of soil microorganisms in plant mineral nutrition—current knowledge and future directions. Frontiers in Plant Science, 8.

Zolla, G., Badri, D. V., Bakker, M. G., Manter, D. K., & Vivanco, J. M. (2013). Soil microbiomes vary in their ability to confer drought tolerance to Arabidopsis. Applied Soil Ecology, 68, 1–9.

Jiao, S., Chen, W., Wang, J., Du, N., Li, Q., & Wei, G. (2018). Soil microbiomes with distinct assemblies through vertical soil profiles drive the cycling of multiple nutrients in reforested ecosystems. Microbiome, 6(1), 146.

Guo, Z., Wan, S., Hua, K., Yin, Y., Chu, H. Y., Wang, D., & Guo, X. (2020). Fertilisation regime has a greater effect on soil microbial community structure than crop rotation and growth stage in an agroecosystem. Applied Soil Ecology, 149(40), 103510.

Johns, C. (2017). Living Soils: The Role of Microorganisms in Soil Health. Future Directions International, 20 June 2017.

Lladó, S., López-Mondéjar, R., & Baldrian, P. (2017). Forest Soil Bacteria: Diversity, Involvement in Ecosystem Processes, and Response to Global Change. Microbiology and Molecular Biology Reviews, 81(2), 1–27.

Bhatti, A. A., Haq, S., & Bhat, R. A. (2017). Actinomycetes benefaction role in soil and plant health. Microbial Pathogenesis, 111, 458–467.

Hozzein, W. N., Abuelsoud, W., Wadaan, M. A. M., Shuikan, A. M., Selim, S., Al Jaouni, S., & AbdElgawad, H. (2019). Exploring the potential of actinomycetes in improving soil fertility and grain quality of economically important cereals. Science of the Total Environment, 651, 2787–2798.

Zhang, Z., Zhang, J., & Jiao, S. (2021). Fungi show broader environmental thresholds in wet than dry agricultural soils with distinct biogeographic patterns. Science of the Total Environment, 750, 141761.

Nguyen, T. M., Seo, C., Ji, M., Paik, M. J., Myung, S. W., & Kim, J. (2018). Effective soil extraction method for cultivating previously uncultured soil bacteria. Applied and Environmental Microbiology, 84(24).

Polyak, Y., Bakina, L., Mayachkina, N., & Polyak, M. (2020). The possible role of toxigenic fungi in ecotoxicity of two contrasting oil-contaminated soils – A field study. Ecotoxicology and Environmental Safety, 202(June), 110959.

Dadrasnia, A., Usman, M. M., Omar, R., Ismail, S., & Abdullah, R. (2020). Potential use of Bacillus genus to control of bananas diseases: Approaches toward high yield production and sustainable management. Journal of King Saud University - Science, 32(4), 2336–2342.

Mathew, D., Kumar, C. S., & Cherian, K. A. (2020). Foliar fungal disease classification in banana plants using elliptical local binary pattern on multiresolution dual-tree complex wavelet transform domain. Information Processing in Agriculture, xxxx, 1–13.

Panigrahi, N., Thompson, A. J., Zubelzu, S., & Knox, J. W. (2021). Identifying opportunities to improve management of water stress in banana production. Scientia Horticulturae, 276(September 2020), 109735.

Leonel, M., Bolfarini, A. C. B., Rodrigues da Silva, M. J., Souza, J. M. A., & Leonel, S. (2020). Banana fruits with high content of resistant starch: Effect of genotypes and phosphorus fertilisation. International Journal of Biological Macromolecules, 150, 1020–1026.

Qamar, S., & Shaikh, A. (2018). Therapeutic potentials and compositional changes of valuable compounds from banana- A review. Trends in Food Science and Technology, 79(April), 1–9.

Singh, B., Singh, J. P., Kaur, A., & Singh, N. (2016). Bioactive compounds in banana and their associated health benefits - A review. Food Chemistry, 206, 1–11.

Al-Mqbali, L. R. A., & Hossain, M. A. (2019). Cytotoxic and antimicrobial potential of different varieties of ripe banana used traditionally to treat ulcers. Toxicology Reports, 6(September), 1086–1090.

Ado Ahmad, B., Abdullahi Zakariyya, U., Abubakar, M., Muhammad Sani, M., & Adam Ahmad, M. (2020). Pharmacological Activities of Banana. In Banana Nutrition - Function and Processing Kinetics. IntechOpen.

Gomez Selvaraj, M., Vergara, A., Montenegro, F., Alonso Ruiz, H., Safari, N., Raymaekers, D., Ocimati, W., Ntamwira, J., Tits, L., Omondi, A. B., & Blomme, G. (2020). Detection of banana plants and their major diseases through aerial images and machine learning methods: A case study in DR Congo and Republic of Benin. ISPRS Journal of Photogrammetry and Remote Sensing, 169(September), 110–124.

Rajamanickam, S., Karthikeyan, G., Kavino, M., & Manoranjitham, S. K. (2018). Biohardening of micropropagated banana using endophytic bacteria to induce plant growth promotion and restrain rhizome rot disease caused by Pectobacterium carotovorum subsp. carotovorum. Scientia Horticulturae, 231(November 2017), 179–187.

Selvarajan, R., Kanichelvam, P. S., Balasubramanian, V., & Sethurama Subramanian, S. (2020). A rapid and sensitive lateral flow immunoassay (LFIA) test for the on-site detection of banana bract mosaic virus in banana plants. Journal of Virological Methods, 284(September 2018).

Dwivany, F. M., Nugrahapraja, H., Rahmawati, A. R., Meitasari, D. P., Putra, A. M., Septiani, P., Farah, N., & Subandiyah, S. (2020). Data on banana transcriptome in response to blood disease infection. Data in Brief, 29, 105133.

Blomme, G., Dita, M., Jacobsen, K. S., Vicente, L. P., Molina, A., Ocimati, W., Poussier, S., & Prior, P. (2017). Bacterial diseases of bananas and enset: Current state of knowledge and integrated approaches toward sustainable management. Frontiers in Plant Science, 8(July), 1–25.

Premabati, T., & De Mandal, S. (2020). Bacterial diseases of banana: detection, characterisation, and control management. In Recent Advancements in Microbial Diversity. Elsevier Inc.

Ramírez, M., Neuman, B. W., & Ramírez, C. A. (2020). Bacteriophages as promising agents for the biological control of Moko disease (Ralstonia solanacearum) of banana. Biological Control, 149(October 2019), 104238.

Khaledian, S., Nikkhah, M., Shams-bakhsh, M., & Hoseinzadeh, S. (2017). A sensitive biosensor based on gold nanoparticles to detect Ralstonia solanacearum in soil. Journal of General Plant Pathology, 83(4), 231–239.

Tan, S., Gu, Y., Yang, C., Dong, Y., Mei, X., Shen, Q., & Xu, Y. (2015). Bacillus amyloliquefaciens T-5 may prevent Ralstonia solanacearum infection through competitive exclusion. Biology and Fertility of Soils, 52(3), 341–351.

McCampbell, M., Schut, M., Van den Bergh, I., van Schagen, B., Vanlauwe, B., Blomme, G., Gaidashova, S., Njukwe, E., & Leeuwis, C. (2018). Xanthomonas Wilt of Banana (BXW) in Central Africa: Opportunities, challenges, and pathways for citizen science and ICT-based control and prevention strategies. NJAS - Wageningen Journal of Life Sciences, 86–87(August 2017), 89–100.

Thiyagarajan, V., Yenjerappa, S. T., Sunkad, G., Aswathanarayana, D. S., Karuppaiah, V., & Shaila, H. M. (2017). Survey on Tip-over Disease of Banana caused by Erwinia carotovora subsp. carotovora (Jones) Holland in Parts North Eastern Karnataka, India. International Journal of Current Microbiology and Applied Sciences, 6(6), 2973–2976.

Deltour, P., França, S. C., Liparini Pereira, O., Cardoso, I., De Neve, S., Debode, J., & Höfte, M. (2017). Disease suppressiveness to Fusarium wilt of banana in an agroforestry system: Influence of soil characteristics and plant community. Agriculture, Ecosystems and Environment, 239, 173–181.

Xiong, W., Guo, S., Jousset, A., Zhao, Q., Wu, H., Li, R., Kowalchuk, G. A., & Shen, Q. (2017). Bio-fertiliser application induces soil suppressiveness against Fusarium wilt disease by reshaping the soil microbiome. Soil Biology and Biochemistry, 114, 238–247.

Dita, M., Barquero, M., Heck, D., Mizubuti, E. S. G., & Staver, C. P. (2018). Fusarium wilt of banana: Current knowledge on epidemiology and research needs toward sustainable disease management. Frontiers in Plant Science, 871(October), 1–21.

Shen, Z., Zhong, S., Wang, Y., Wang, B., Mei, X., Li, R., Ruan, Y., & Shen, Q. (2013). Induced soil microbial suppression of banana fusarium wilt disease using compost and biofertilisers to improve yield and quality. European Journal of Soil Biology, 57, 1–8.

Shen, Z., Xue, C., Penton, C. R., Thomashow, L. S., Zhang, N., Wang, B., Ruan, Y., Li, R., & Shen, Q. (2019). Suppression of banana Panama disease induced by soil microbiome reconstruction through an integrated agricultural strategy. Soil Biology and Biochemistry, 128(November 2017), 164–174.

Bernard, E., Larkin, R. P., Tavantzis, S., Erich, M. S., Alyokhin, A., Sewell, G., Lannan, A., & Gross, S. D. (2012). Compost, rapeseed rotation, and biocontrol agents significantly impact soil microbial communities in organic and conventional potato production systems. Applied Soil Ecology, 52(1), 29–41.

Shen, Z., Ruan, Y., Wang, B., Zhong, S., Su, L., Li, R., & Shen, Q. (2015). Effect of biofertiliser for suppressing Fusarium wilt disease of banana as well as enhancing microbial and chemical properties of soil under greenhouse trial. Applied Soil Ecology, 93, 111–119.

Raymaekers, K., Ponet, L., Holtappels, D., Berckmans, B., & Cammue, B. P. A. (2020). Screening for novel biocontrol agents applicable in plant disease management – A review. Biological Control, 144(February), 104240.

You, C., Zhang, C., Kong, F., Feng, C., & Wang, J. (2016). Comparison of the effects of biocontrol agent Bacillus subtilis and fungicide metalaxyl-mancozeb on bacterial communities in tobacco rhizospheric soil. Ecological Engineering, 91, 119–125.

Wang, J., Zhao, Y., & Ruan, Y. (2015). Effects of bio-organic fertilisers produced by four Bacillus amyloliquefaciens strains on banana fusarium wilt disease. Compost Science and Utilisation, 23(3), 185–198.

Wang, B., Shen, Z., Zhang, F., Raza, W., Yuan, J., Huang, R., Ruan, Y., Li, R., & Shen, Q. (2016). Bacillus amyloliquefaciens Strain W19 can Promote Growth and Yield and Suppress Fusarium Wilt in Banana Under Greenhouse and Field Conditions. Pedosphere, 26(5), 733–744.

Shen, Z., Xue, C., Taylor, P. W. J., Ou, Y., Wang, B., Zhao, Y., Ruan, Y., Li, R., & Shen, Q. (2018). Soil pre-fumigation could effectively improve the disease suppressiveness of biofertiliser to banana Fusarium wilt disease by reshaping the soil microbiome. Biology and Fertility of Soils, 54(7), 793–806.


DOI: 10.33102/mjosht.v8i1.246
Published: 2022-03-31

How to Cite

Nur Aina Mardhiah Zolkhairi, & Ismail, I. N. A. (2022). Soil Microbiome and Banana Plant Diseases: A Review. Malaysian Journal of Science Health & Technology, 8(1), 85–91.



Food Science & Nutrition