Soil Microbiome and Banana Plant Diseases: A Review
DOI:
https://doi.org/10.33102/mjosht.v8i1.246Keywords:
Soil microbiome, Banana plant diseaseAbstract
Soil microbiomes not only benefits the ecosystem, such as facilitating nitrogen cycling, but they can also cause unhealthy plant or even death since some of the microbes are pathogens. The crops yield will significantly decrease if the pathogens are still assembled in the soil, which could cause losses to farmers. Previous studies have acknowledged several aspects of the roles of soil microbiome and how soil variations can affect the availability and functions of the microbes. Banana is one of the most popular, commonly consumed, and essential fruit crops worldwide. Nevertheless, the accumulation of pathogenic microorganisms as primary inhabitants in the soil become a main limiting factor in banana crops production. With current studies and technologies, the disease caused by pathogenic microbes in the soil can be controlled. The scope of this review is on soil microbiomes that contribute to banana plant diseases and the methods to control the disease.
Downloads
References
Kalev, S. D., & Toor, G. S. (2018). The Composition of Soils and Sediments. Green Chemistry: An Inclusive Approach, 339–357. https://doi.org/10.1016/B978-0-12-809270-5.00014-5
Schoonover, J. E., & Crim, J. F. (2015). An Introduction to Soil Concepts and the Role of Soils in Watershed Management. Journal of Contemporary Water Research & Education, 154(1), 21–47. https://doi.org/10.1111/j.1936-704x.2015.03186.x
Thakur, M. P., & Geisen, S. (2019). Trophic Regulations of the Soil Microbiome. Trends in Microbiology, 27(9), 771–780. https://doi.org/10.1016/j.tim.2019.04.008
Rasmussen, P. U., Bennett, A. E., & Tack, A. J. M. (2020). The impact of elevated temperature and drought on the ecology and evolution of plant-soil microbe interactions. Journal of Ecology, 108(1), 337–352. https://doi.org/10.1111/1365-2745.13292
Mohiuddin, A., Saha, M. K., Hossian, M. S., & Ferdoushi, A. (2014). Usefulness of Banana (Musa paradisiaca) Wastes in Manufacturing of Bio-products: A Review. The Agriculturists, 12(1), 148–158. https://doi.org/10.3329/agric.v12i1.19870
Abdullah, N., Sulaiman, F., & Taib, R. M. (2013). Characterisation of banana (Musa spp.) plantation wastes as a potential renewable energy source. AIP Conference Proceedings, 1528, 325–330. https://doi.org/10.1063/1.4803618
Abdulkadir, Mohamed. (2016). Chapter two: Soil physical properties. pp. 27–62.
Hatfield, J. L., Sauer, T. J., & Cruse, R. M. (2017). Soil: The Forgotten Piece of the Water, Food, Energy Nexus. In Advances in Agronomy (Vol. 143, pp. 1–46). Academic Press Inc. https://doi.org/10.1016/bs.agron.2017.02.001
Schlatter, D. C., Kahl, K., Carlson, B., Huggins, D. R., & Paulitz, T. (2020). Soil acidification modifies soil depth-microbiome relationships in a no-till wheat cropping system. Soil Biology and Biochemistry, 149 (February), 107939. https://doi.org/10.1016/j.soilbio.2020.107939.
Gelybó, G., Tóth, E., Farkas, C., Horel, Kása, I., & Bakacsi, Z. (2018). Potential impacts of climate change on soil properties. Agrokemia Es Talajtan, 67(1), 121–141. https://doi.org/10.1556/0088.2018.67.1.9
Jansson, J. K., & Hofmockel, K. S. (2018). The soil microbiome — from metagenomics to metaphenomics. Current Opinion in Microbiology, 43, 162–168. https://doi.org/10.1016/j.mib.2018.01.013
Yang, R., Su, Y. Z., Wang, T., & Yang, Q. (2016). Effect of chemical and organic fertilisation on soil carbon and nitrogen accumulation in a newly cultivated farmland. Journal of Integrative Agriculture, 15(3), 658–666. https://doi.org/10.1016/S2095-3119(15)61107-8
Zhao, Z. B., He, J. Z., Quan, Z., Wu, C. F., Sheng, R., Zhang, L. M., & Geisen, S. (2020). Fertilisation changes soil microbiome functioning, especially phagotrophic protists. Soil Biology and Biochemistry, 148(April), 107863. https://doi.org/10.1016/j.soilbio.2020.107863
Ling, N., Zhu, C., Xue, C., Chen, H., Duan, Y., Peng, C., Guo, S., & Shen, Q. (2016). Insight into how organic amendments can shape the soil microbiome in long-term field experiments as revealed by network analysis. Soil Biology and Biochemistry, 99, 137–149. https://doi.org/10.1016/j.soilbio.2016.05.005
Anzuay, M. S., Frola, O., Angelini, J. G., Ludueña, L. M., Ibañez, F., Fabra, A., & Taurian, T. (2015). Effect of pesticides application on peanut (Arachis hypogaea L.) associated phosphate solubilising soil bacteria. Applied Soil Ecology, 95, 31–37. https://doi.org/10.1016/j.apsoil.2015.05.003
Wang, C. N., Wu, R. L., Li, Y. Y., Qin, Y. F., Li, Y. L., Meng, F. Q., Wang, L. G., & Xu, F. L. (2020). Effects of pesticide residues on bacterial community diversity and structure in typical greenhouse soils with increasing cultivation years in Northern China. Science of the Total Environment, 710, 136321. https://doi.org/10.1016/j.scitotenv.2019.136321
Wang, X., Lu, Z., Miller, H., Liu, J., Hou, Z., Liang, S., Zhao, X., Zhang, H., & Borch, T. (2020). Fungicide azoxystrobin induced changes on the soil microbiome. Applied Soil Ecology, 145(May 2019), 103343. https://doi.org/10.1016/j.apsoil.2019.08.005
Teng, Y., & Chen, W. (2019). Soil Microbiomes—a Promising Strategy for Contaminated Soil Remediation: A Review. Pedosphere, 29(3), 283–297. https://doi.org/10.1016/S1002-0160(18)60061-X
García-Jiménez, B., & Wilkinson, M. D. (2019). Robust and automatic definition of microbiome states. PeerJ, 2019(3), e6657. https://doi.org/10.7717/peerj.6657
Schlatter, D., Kinkel, L., Thomashow, L., Weller, D., & Paulitz, T. (2017). Disease suppressive soils: New insights from the soil microbiome. In Phytopathology (Vol. 107, Issue 11, pp. 1284–1297). American Phytopathological Society. https://doi.org/10.1094/PHYTO-03-17-0111-RVW
Berg, G., Rybakova, D., Fischer, D., Cernava, T., Vergès, M. C. C., Charles, T., Chen, X., Cocolin, L., Eversole, K., Corral, G. H., Kazou, M., Kinkel, L., Lange, L., Lima, N., Loy, A., Macklin, J. A., Maguin, E., Mauchline, T., McClure, R., … Schloter, M. (2020). Microbiome definition re-visited: old concepts and new challenges. Microbiome, 8(1), 1–22. https://doi.org/10.1186/s40168-020-00875-0
Eichorst, S. A., Breznak, J. A., & Schmidt, T. M. (2007). Isolation and characterisation of soil bacteria that define Terriglobus gen. nov., in the phylum Acidobacteria. Applied and Environmental Microbiology, 73(8), 2708–2717. https://doi.org/10.1128/AEM.02140-06
Sudarma, I. M., & Suprapta, D. N. (2011). Diversity of soil microorganisms in banana habitats with and without fusarium wilt symptom. International Society for Southeast Asian Agricultural Sciences. 17(1), 147–159.
Bakker, P. A. H. M., Berendsen, R. L., Van Pelt, J. A., Vismans, G., Yu, K., Li, E., Van Bentum, S., Poppeliers, S. W. M., Sanchez Gil, J. J., Zhang, H., Goossens, P., Stringlis, I. A., Song, Y., de Jonge, R., & Pieterse, C. M. J. (2020). The Soil-Borne Identity and Microbiome-Assisted Agriculture: Looking Back to the Future. Molecular Plant, 13(10), 1394–1401. https://doi.org/10.1016/j.molp.2020.09.017
Qiu, S. C., Jiang, J., Liu, X., Chen, M., & Yuan, X. (2020). Actinomycetes – The microbial machinery for the organic-cycling, plant growth, and sustainable soil health. International Journal of Hospitality Management, 102759. https://doi.org/10.1016/j.bcab.2020.101893
Geisseler, D., Linquist, B. A., & Lazicki, P. A. (2017). Effect of fertilisation on soil microorganisms in paddy rice systems – A meta-analysis. Soil Biology and Biochemistry, 115, 452–460. https://doi.org/10.1016/j.soilbio.2017.09.018
Eilers, K. G., Debenport, S., Anderson, S., & Fierer, N. (2012). Digging deeper to find unique microbial communities: The strong effect of depth on the structure of bacterial and archaeal communities in soil. Soil Biology and Biochemistry, 50, 58–65. https://doi.org/10.1016/j.soilbio.2012.03.011
Lakshmanan, V., Selvaraj, G., & Bais, H. P. (2014). Functional soil microbiome: Belowground solutions to an aboveground problem. Plant Physiology, 166(2), 689–700. https://doi.org/10.1104/pp.114.245811
Hong, S., Jv, H., Lu, M., Wang, B., Zhao, Y., & Ruan, Y. (2020). Significant decline in banana Fusarium wilt disease is associated with soil microbiome reconstruction under chilli pepper-banana rotation. European Journal of Soil Biology, 97(August 2019), 103154. https://doi.org/10.1016/j.ejsobi.2020.103154
Lupatini, M., Korthals, G. W., de Hollander, M., Janssens, T. K. S., & Kuramae, E. E. (2017). Soil microbiome is more heterogeneous in organic than in conventional farming system. Frontiers in Microbiology, 7(JAN). https://doi.org/10.3389/fmicb.2016.02064
Jacoby, R., Peukert, M., Succurro, A., Koprivova, A., & Kopriva, S. (2017). The role of soil microorganisms in plant mineral nutrition—current knowledge and future directions. Frontiers in Plant Science, 8. https://doi.org/10.3389/fpls.2017.01617
Zolla, G., Badri, D. V., Bakker, M. G., Manter, D. K., & Vivanco, J. M. (2013). Soil microbiomes vary in their ability to confer drought tolerance to Arabidopsis. Applied Soil Ecology, 68, 1–9. https://doi.org/10.1016/j.apsoil.2013.03.007
Jiao, S., Chen, W., Wang, J., Du, N., Li, Q., & Wei, G. (2018). Soil microbiomes with distinct assemblies through vertical soil profiles drive the cycling of multiple nutrients in reforested ecosystems. Microbiome, 6(1), 146. https://doi.org/10.1186/s40168-018-0526-0
Guo, Z., Wan, S., Hua, K., Yin, Y., Chu, H. Y., Wang, D., & Guo, X. (2020). Fertilisation regime has a greater effect on soil microbial community structure than crop rotation and growth stage in an agroecosystem. Applied Soil Ecology, 149(40), 103510. https://doi.org/10.1016/j.apsoil.2020.103510.
Johns, C. (2017). Living Soils: The Role of Microorganisms in Soil Health. Future Directions International, 20 June 2017.
Lladó, S., López-Mondéjar, R., & Baldrian, P. (2017). Forest Soil Bacteria: Diversity, Involvement in Ecosystem Processes, and Response to Global Change. Microbiology and Molecular Biology Reviews, 81(2), 1–27. https://doi.org/10.1128/mmbr.00063-16
Bhatti, A. A., Haq, S., & Bhat, R. A. (2017). Actinomycetes benefaction role in soil and plant health. Microbial Pathogenesis, 111, 458–467. https://doi.org/10.1016/j.micpath.2017.09.036
Hozzein, W. N., Abuelsoud, W., Wadaan, M. A. M., Shuikan, A. M., Selim, S., Al Jaouni, S., & AbdElgawad, H. (2019). Exploring the potential of actinomycetes in improving soil fertility and grain quality of economically important cereals. Science of the Total Environment, 651, 2787–2798. https://doi.org/10.1016/j.scitotenv.2018.10.048
Zhang, Z., Zhang, J., & Jiao, S. (2021). Fungi show broader environmental thresholds in wet than dry agricultural soils with distinct biogeographic patterns. Science of the Total Environment, 750, 141761. https://doi.org/10.1016/j.scitotenv.2020.141761
Nguyen, T. M., Seo, C., Ji, M., Paik, M. J., Myung, S. W., & Kim, J. (2018). Effective soil extraction method for cultivating previously uncultured soil bacteria. Applied and Environmental Microbiology, 84(24). https://doi.org/10.1128/AEM.01145-18
Polyak, Y., Bakina, L., Mayachkina, N., & Polyak, M. (2020). The possible role of toxigenic fungi in ecotoxicity of two contrasting oil-contaminated soils – A field study. Ecotoxicology and Environmental Safety, 202(June), 110959. https://doi.org/10.1016/j.ecoenv.2020.110959
Dadrasnia, A., Usman, M. M., Omar, R., Ismail, S., & Abdullah, R. (2020). Potential use of Bacillus genus to control of bananas diseases: Approaches toward high yield production and sustainable management. Journal of King Saud University - Science, 32(4), 2336–2342. https://doi.org/10.1016/j.jksus.2020.03.011
Mathew, D., Kumar, C. S., & Cherian, K. A. (2020). Foliar fungal disease classification in banana plants using elliptical local binary pattern on multiresolution dual-tree complex wavelet transform domain. Information Processing in Agriculture, xxxx, 1–13. https://doi.org/10.1016/j.inpa.2020.11.002
Panigrahi, N., Thompson, A. J., Zubelzu, S., & Knox, J. W. (2021). Identifying opportunities to improve management of water stress in banana production. Scientia Horticulturae, 276(September 2020), 109735. https://doi.org/10.1016/j.scienta.2020.109735
Leonel, M., Bolfarini, A. C. B., Rodrigues da Silva, M. J., Souza, J. M. A., & Leonel, S. (2020). Banana fruits with high content of resistant starch: Effect of genotypes and phosphorus fertilisation. International Journal of Biological Macromolecules, 150, 1020–1026. https://doi.org/10.1016/j.ijbiomac.2019.10.217
Qamar, S., & Shaikh, A. (2018). Therapeutic potentials and compositional changes of valuable compounds from banana- A review. Trends in Food Science and Technology, 79(April), 1–9. https://doi.org/10.1016/j.tifs.2018.06.016
Singh, B., Singh, J. P., Kaur, A., & Singh, N. (2016). Bioactive compounds in banana and their associated health benefits - A review. Food Chemistry, 206, 1–11. https://doi.org/10.1016/j.foodchem.2016.03.033
Al-Mqbali, L. R. A., & Hossain, M. A. (2019). Cytotoxic and antimicrobial potential of different varieties of ripe banana used traditionally to treat ulcers. Toxicology Reports, 6(September), 1086–1090. https://doi.org/10.1016/j.toxrep.2019.10.003
Ado Ahmad, B., Abdullahi Zakariyya, U., Abubakar, M., Muhammad Sani, M., & Adam Ahmad, M. (2020). Pharmacological Activities of Banana. In Banana Nutrition - Function and Processing Kinetics. IntechOpen. https://doi.org/10.5772/intechopen.83299
Gomez Selvaraj, M., Vergara, A., Montenegro, F., Alonso Ruiz, H., Safari, N., Raymaekers, D., Ocimati, W., Ntamwira, J., Tits, L., Omondi, A. B., & Blomme, G. (2020). Detection of banana plants and their major diseases through aerial images and machine learning methods: A case study in DR Congo and Republic of Benin. ISPRS Journal of Photogrammetry and Remote Sensing, 169(September), 110–124. https://doi.org/10.1016/j.isprsjprs.2020.08.025
Rajamanickam, S., Karthikeyan, G., Kavino, M., & Manoranjitham, S. K. (2018). Biohardening of micropropagated banana using endophytic bacteria to induce plant growth promotion and restrain rhizome rot disease caused by Pectobacterium carotovorum subsp. carotovorum. Scientia Horticulturae, 231(November 2017), 179–187. https://doi.org/10.1016/j.scienta.2017.12.037
Selvarajan, R., Kanichelvam, P. S., Balasubramanian, V., & Sethurama Subramanian, S. (2020). A rapid and sensitive lateral flow immunoassay (LFIA) test for the on-site detection of banana bract mosaic virus in banana plants. Journal of Virological Methods, 284(September 2018). https://doi.org/10.1016/j.jviromet.2020.113929
Dwivany, F. M., Nugrahapraja, H., Rahmawati, A. R., Meitasari, D. P., Putra, A. M., Septiani, P., Farah, N., & Subandiyah, S. (2020). Data on banana transcriptome in response to blood disease infection. Data in Brief, 29, 105133. https://doi.org/10.1016/j.dib.2020.105133
Blomme, G., Dita, M., Jacobsen, K. S., Vicente, L. P., Molina, A., Ocimati, W., Poussier, S., & Prior, P. (2017). Bacterial diseases of bananas and enset: Current state of knowledge and integrated approaches toward sustainable management. Frontiers in Plant Science, 8(July), 1–25. https://doi.org/10.3389/fpls.2017.01290
Premabati, T., & De Mandal, S. (2020). Bacterial diseases of banana: detection, characterisation, and control management. In Recent Advancements in Microbial Diversity. Elsevier Inc. https://doi.org/10.1016/b978-0-12-821265-3.00004-9
Ramírez, M., Neuman, B. W., & Ramírez, C. A. (2020). Bacteriophages as promising agents for the biological control of Moko disease (Ralstonia solanacearum) of banana. Biological Control, 149(October 2019), 104238. https://doi.org/10.1016/j.biocontrol.2020.104238
Khaledian, S., Nikkhah, M., Shams-bakhsh, M., & Hoseinzadeh, S. (2017). A sensitive biosensor based on gold nanoparticles to detect Ralstonia solanacearum in soil. Journal of General Plant Pathology, 83(4), 231–239. https://doi.org/10.1007/s10327-017-0721-z
Tan, S., Gu, Y., Yang, C., Dong, Y., Mei, X., Shen, Q., & Xu, Y. (2015). Bacillus amyloliquefaciens T-5 may prevent Ralstonia solanacearum infection through competitive exclusion. Biology and Fertility of Soils, 52(3), 341–351. https://doi.org/10.1007/s00374-015-1079-z
McCampbell, M., Schut, M., Van den Bergh, I., van Schagen, B., Vanlauwe, B., Blomme, G., Gaidashova, S., Njukwe, E., & Leeuwis, C. (2018). Xanthomonas Wilt of Banana (BXW) in Central Africa: Opportunities, challenges, and pathways for citizen science and ICT-based control and prevention strategies. NJAS - Wageningen Journal of Life Sciences, 86–87(August 2017), 89–100. https://doi.org/10.1016/j.njas.2018.03.002
Thiyagarajan, V., Yenjerappa, S. T., Sunkad, G., Aswathanarayana, D. S., Karuppaiah, V., & Shaila, H. M. (2017). Survey on Tip-over Disease of Banana caused by Erwinia carotovora subsp. carotovora (Jones) Holland in Parts North Eastern Karnataka, India. International Journal of Current Microbiology and Applied Sciences, 6(6), 2973–2976. https://doi.org/10.20546/ijcmas.2017.606.354
Deltour, P., França, S. C., Liparini Pereira, O., Cardoso, I., De Neve, S., Debode, J., & Höfte, M. (2017). Disease suppressiveness to Fusarium wilt of banana in an agroforestry system: Influence of soil characteristics and plant community. Agriculture, Ecosystems and Environment, 239, 173–181. https://doi.org/10.1016/j.agee.2017.01.018
Xiong, W., Guo, S., Jousset, A., Zhao, Q., Wu, H., Li, R., Kowalchuk, G. A., & Shen, Q. (2017). Bio-fertiliser application induces soil suppressiveness against Fusarium wilt disease by reshaping the soil microbiome. Soil Biology and Biochemistry, 114, 238–247. https://doi.org/10.1016/j.soilbio.2017.07.016
Dita, M., Barquero, M., Heck, D., Mizubuti, E. S. G., & Staver, C. P. (2018). Fusarium wilt of banana: Current knowledge on epidemiology and research needs toward sustainable disease management. Frontiers in Plant Science, 871(October), 1–21. https://doi.org/10.3389/fpls.2018.01468
Shen, Z., Zhong, S., Wang, Y., Wang, B., Mei, X., Li, R., Ruan, Y., & Shen, Q. (2013). Induced soil microbial suppression of banana fusarium wilt disease using compost and biofertilisers to improve yield and quality. European Journal of Soil Biology, 57, 1–8. https://doi.org/10.1016/j.ejsobi.2013.03.006
Shen, Z., Xue, C., Penton, C. R., Thomashow, L. S., Zhang, N., Wang, B., Ruan, Y., Li, R., & Shen, Q. (2019). Suppression of banana Panama disease induced by soil microbiome reconstruction through an integrated agricultural strategy. Soil Biology and Biochemistry, 128(November 2017), 164–174. https://doi.org/10.1016/j.soilbio.2018.10.016
Bernard, E., Larkin, R. P., Tavantzis, S., Erich, M. S., Alyokhin, A., Sewell, G., Lannan, A., & Gross, S. D. (2012). Compost, rapeseed rotation, and biocontrol agents significantly impact soil microbial communities in organic and conventional potato production systems. Applied Soil Ecology, 52(1), 29–41. https://doi.org/10.1016/j.apsoil.2011.10.002
Shen, Z., Ruan, Y., Wang, B., Zhong, S., Su, L., Li, R., & Shen, Q. (2015). Effect of biofertiliser for suppressing Fusarium wilt disease of banana as well as enhancing microbial and chemical properties of soil under greenhouse trial. Applied Soil Ecology, 93, 111–119. https://doi.org/10.1016/j.apsoil.2015.04.013
Raymaekers, K., Ponet, L., Holtappels, D., Berckmans, B., & Cammue, B. P. A. (2020). Screening for novel biocontrol agents applicable in plant disease management – A review. Biological Control, 144(February), 104240. https://doi.org/10.1016/j.biocontrol.2020.104240
You, C., Zhang, C., Kong, F., Feng, C., & Wang, J. (2016). Comparison of the effects of biocontrol agent Bacillus subtilis and fungicide metalaxyl-mancozeb on bacterial communities in tobacco rhizospheric soil. Ecological Engineering, 91, 119–125. https://doi.org/10.1016/j.ecoleng.2016.02.011
Wang, J., Zhao, Y., & Ruan, Y. (2015). Effects of bio-organic fertilisers produced by four Bacillus amyloliquefaciens strains on banana fusarium wilt disease. Compost Science and Utilisation, 23(3), 185–198. https://doi.org/10.1080/1065657X.2015.1020398
Wang, B., Shen, Z., Zhang, F., Raza, W., Yuan, J., Huang, R., Ruan, Y., Li, R., & Shen, Q. (2016). Bacillus amyloliquefaciens Strain W19 can Promote Growth and Yield and Suppress Fusarium Wilt in Banana Under Greenhouse and Field Conditions. Pedosphere, 26(5), 733–744. https://doi.org/10.1016/S1002-0160(15)60083-2
Shen, Z., Xue, C., Taylor, P. W. J., Ou, Y., Wang, B., Zhao, Y., Ruan, Y., Li, R., & Shen, Q. (2018). Soil pre-fumigation could effectively improve the disease suppressiveness of biofertiliser to banana Fusarium wilt disease by reshaping the soil microbiome. Biology and Fertility of Soils, 54(7), 793–806. https://doi.org/10.1007/s00374-018-1303-8
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Ismatul Nurul Asyikin Ismail
This work is licensed under a Creative Commons Attribution 4.0 International License.
The copyright of this article will be vested to author(s) and granted the journal right of first publication with the work simultaneously licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0) license, unless otherwise stated.