Recombinase Polymerase Amplification and Their Application in Phytopathogen Detection
DOI:
https://doi.org/10.33102/mjosht.v8i2.254Keywords:
isothermal amplification, recombinase polymerase amplification, plant pathogens, diagnosticAbstract
DNA identification method is indispensable for the detection of a plant pathogen. However, established techniques, though reliable, requires advanced equipment, and their application outside specialized laboratories is limited. Along with the advancement of molecular techniques, several isothermal amplification methods, including Recombinase Polymerase Amplification (RPA), has been developed in this study. In fact, RPA is a rapid and sensitive amplification method, operating optimally at 37-42 degree celcius for 15 to 30 minutes with minimal sample preparation, and can amplify as low as 1-10 target copies. Furthermore, RPA has been a favourable method for the detection of plant pathogens due to its advantageous parameters. This review presents the current knowledge of RPA and its application in plant pathogen detection.
Downloads
References
Asadi, R., & Mollasalehi, H. (2021). The mechanism and improvements to the isothermal amplification of nucleic acids, at a glance. Analytical Biochemistry, 631, 114260. doi.org/10.1016/j.ab.2021.114260
Moehling, T. J., Choi, G., Dugan, L. C., Salit, M., & Meagher, R. J. (2021). LAMP diagnostics at the point-of-care: Emerging trends and perspectives for the developer community. Expert Review of Molecular Diagnostics, 21(1), 43-61. doi.org/10.1080/14737159.2021.1873769
Barreda-García, S., Miranda-Castro, R., de-Los-Santos-Álvarez, N., Miranda-Ordieres, A. J., & Lobo-Castañón, M. J. (2018). Helicase-dependent isothermal amplification: a novel tool in the development of molecular-based analytical systems for rapid pathogen detection. Analytical and bioanalytical chemistry, 410(3), 679-693. doi.org/10.1007/s00216-017-0620-3
Gu, L., Yan, W., Liu, L., Wang, S., Zhang, X., & Lyu, M. (2018). Research progress on rolling circle amplification (RCA)-based biomedical sensing. Pharmaceuticals, 11(2), 35. doi.org/10.3390/ph11020035
Lobato, I. M., & O'Sullivan, C. K. (2018). Recombinase polymerase amplification: Basics, applications and recent advances. Trac Trends in analytical chemistry, 98, 19-35. doi.org/10.1016/j.trac.2017.10.015
Ji, T., Liu, Z., Wang, G., Guo, X., Lai, C., Chen, H., Huang, S., Xia, S., Chen, B., Jia, H. and Chen, Y., 2020. (2020). Detection of COVID-19: A review of the current literature and future perspectives. Biosensors and Bioelectronics, 166, 112455. doi.org/10.1016/j.bios.2020.112455
Lau, H. Y., & Botella, J. R. (2017). Advanced DNA-based point-of-care diagnostic methods for plant diseases detection. Frontiers in plant science, 8, 2016. doi.org/10.3389/fpls.2017.02016
Nagamine, K., Kuzuhara, Y., & Notomi, T. (2002). Isolation of single-stranded DNA from loop-mediated isothermal amplification products. Biochemical and biophysical research communications, 290(4), 1195-1198. doi.org/10.1006/bbrc.2001.6334
Du, X. J., Zhou, T. J., Li, P., & Wang, S. (2017). A rapid Salmonella detection method involving thermophilic helicase-dependent amplification and a lateral flow assay. Molecular and cellular probes, 34, 37-44. doi.org/10.1016/j.mcp.2017.05.004
Valasevich, N., & Schneider, B. (2017). Rapid detection of “Candidatus Phytoplasma mali” by recombinase polymerase amplification assays. Journal of Phytopathology, 165(11-12), 762-770. doi.org/10.1111/jph.12616
iepenburg, O., Williams, C. H., Stemple, D. L., & Armes, N. A. (2006). DNA detection using recombination proteins. PLoS biology, 4(7), e204. doi.org/10.1371/journal.pbio.0040204
Formosa, T., & Alberts, B. M. (1986). Purification and characterization of the T4 bacteriophage uvsX protein. Journal of Biological Chemistry, 261(13), 6107-6118. doi.org/10.1016/S0021-9258(17)38499-5
Yonesaki, T., Ryo, Y., Minagawa, T., & Takahashi, H. (1985). Purification and some of the functions of the products of bacteriophage T4 recombination genes, uvs X and uvs Y. European journal of biochemistry, 148(1), 127-134. doi.org/10.1111/j.1432-1033.1985.tb08816.x
Shibata, T., Cunningham, R. P., DasGupta, C., & Radding, C. M. (1979). Homologous pairing in genetic recombination: complexes of recA protein and DNA. P doi.org/10.1073/pnas.76.10.5100roceedings of the National Academy of Sciences, 76(10), 5100-5104.
Okazaki, T., & Kornberg, A. (1964). Enzymatic synthesis of deoxyribonucleic acid: XV. Purification and properties of a polymerase from Bacillus subtilis. Journal of Biological Chemistry, 239(1), 259-268. doi.org/10.1016/S0021-9258(18)51776-2
Daher, R. K., Stewart, G., Boissinot, M., & Bergeron, M. G. (2016). Recombinase polymerase amplification for diagnostic applications. Clinical chemistry, 62(7), 947-958. doi.org/10.1373/clinchem.2015.245829
Yamanaka, E. S., Tortajada-Genaro, L. A., & Maquieira, Á. (2017). Low-cost genotyping method based on allele-specific recombinase polymerase amplification and colorimetric microarray detection. Microchimica Acta, 184(5), 1453-1462. doi.org/10.1007/s00604-017-2144-0
Mayboroda, O., Benito, A.G., Del Rio, J.S., Svobodova, M., Julich, S., Tomaso, H., O’Sullivan, C.K. and Katakis, I. (2016). Isothermal solid-phase amplification system for detection of Yersinia pestis. Analytical and bioanalytical chemistry, 408(3), 671-676. doi.org/10.1007/s00216-015-9177-1
TwistDx, “TwistAmp® DNA Amplification Kits Assay Design Manual,” TwistDx Limited, 2018.
Chan, K., Weaver, S.C., Wong, P.Y., Lie, S., Wang, E., Guerbois, M., Vayugundla, S.P. and Wong, S. (2016). Rapid, affordable and portable medium-throughput molecular device for Zika virus. Scientific reports, 6(1), 1-12. doi.org/10.1038/srep38223
Valiadi, M., Kalsi, S., Jones, I. G., Turner, C., Sutton, J. M., & Morgan, H. (2016). Simple and rapid sample preparation system for the molecular detection of antibiotic resistant pathogens in human urine. Biomedical microdevices, 18(1), 1-10. doi.org/10.1007/s10544-016-0031-9
Qian, W., Lu, Y., Meng, Y., Ye, Z., Wang, L., Wang, R., Zheng, Q., Wu, H. and Wu, J. (2018). Field detection of citrus huanglongbing associated with ‘candidatus liberibacter asiaticus’ by recombinese polymerase amplification within 15 min. Journal of agricultural and food chemistry, 66(22), 5473-5480. doi.org/10.1021/acs.jafc.8b01015
Tian, J., Chu, H., Zhang, Y., Li, K., Tian, H., Zhang, X., & Xu, W. (2019). TiO2 nanoparticle-enhanced linker recombinant strand displacement amplification (LRSDA) for universal label-free visual bioassays. ACS Applied Materials & Interfaces, 11(50), 46504-46514. doi.org/10.1021/acsami.9b16314
Santiago-Felipe, S., Tortajada-Genaro, L. A., Puchades, R., & Maquieira, A. (2014). Recombinase polymerase and enzyme-linked immunosorbent assay as a DNA amplification-detection strategy for food analysis. Analytica chimica acta, 811, 81-87. doi.org/10.1016/j.aca.2013.12.017
McCoy, A. G., Miles, T. D., Bilodeau, G. J., Woods, P., Blomquist, C., Martin, F. N., & Chilvers, M. I. (2020). Validation of a preformulated, field deployable, recombinase polymerase amplification assay for Phytophthora species. Plants, 9(4), 466. doi.org/10.3390/plants9040466
Ghosh, D.K., Kokane, S.B., Kokane, A.D., Warghane, A.J., Motghare, M.R., Bhose, S., Sharma, A.K. and Reddy, M.K. (2018). Development of a recombinase polymerase based isothermal amplification combined with lateral flow assay (HLB-RPA-LFA) for rapid detection of" Candidatus Liberibacter asiaticus". PLoS One, 13(12), e0208530. doi.org/10.1371/journal.pone.0208530
Londoño, M. A., Harmon, C. L., & Polston, J. E. (2016). Evaluation of recombinase polymerase amplification for detection of begomoviruses by plant diagnostic clinics. Virology journal, 13(1), 1-9. doi.org/10.1186/s12985-016-0504-8
Lu, X., Zheng, Y., Zhang, F., Yu, J., Dai, T., Wang, R., Tian, Y., Xu, H., Shen, D. and Dou, D. (2020). A rapid, equipment-free method for detecting Phytophthora infestans in the field using a lateral flow strip-based recombinase polymerase amplification assay. Plant Disease, 104(11), 2774-2778. doi.org/10.1094/PDIS-01-20-0203-SC
Wang, Y., Chen, R., Nie, X., Zhong, Z., Li, C., Li, K., Huang, W., Fu, X., Liu, J. and Nie, B. (2020). Rapid and sensitive detection of potato virus Y by isothermal reverse transcription-recombinase polymerase amplification assay in potato. Molecular and Cellular Probes, 50, 101505. doi.org/10.1016/j.mcp.2019.101505
Kim, N. K., Lee, H. J., Kim, S. M., & Jeong, R. D. (2022). Rapid and Visual Detection of Barley Yellow Dwarf Virus by Reverse Transcription Recombinase Polymerase Amplification with Lateral Flow Strips. The Plant Pathology Journal, 38(2), 159-166. doi.org/10.5423/PPJ.NT.01.2022.0009
Lee, H. J., Kim, H. J., Lee, K., & Jeong, R. D. (2020). Rapid detection of peach latent mosaic viroid by reverse transcription recombinase polymerase amplification. Molecular and Cellular Probes, 53, 101627. doi.org/10.1016/j.mcp.2020.101627
Larrea-Sarmiento, A., Stack, J. P., Alvarez, A. M., & Arif, M. (2021). Multiplex recombinase polymerase amplification assay developed using unique genomic regions for rapid on-site detection of genus Clavibacter and C. nebraskensis. Scientific reports, 11(1), 1-10. doi.org/10.1038/s41598-021-91336-7
Lau, Y.L., Ismail, I.B., Mustapa, N.I.B., Lai, M.Y., Tuan Soh, T.S., Haji Hassan, A., Peariasamy, K.M., Lee, Y.L., Abdul Kahar, M.K.B., Chong, J. and Goh, P.P. (2021). Development of a reverse transcription recombinase polymerase amplification assay for rapid and direct visual detection of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). PLoS One, 16(1), e0245164. doi.org/10.1371/journal.pone.0245164
Burkhardt, A., Henry, P. M., Koike, S. T., Gordon, T. R., & Martin, F. (2019). Detection of Fusarium oxysporum f. sp. fragariae from infected strawberry plants. Plant disease, 103(5), 1006-1013. doi.org/10.1094/PDIS-08-18-1315-RE
urkhardt, A., Ramon, M. L., Smith, B., Koike, S. T., & Martin, F. (2018). Development of molecular methods to detect Macrophomina phaseolina from strawberry plants and soil. Phytopathology, 108(12), 1386-1394. doi.org/10.1094/PHYTO-03-18-0071-R
Hammond, R. W., & Zhang, S. (2016). Development of a rapid diagnostic assay for the detection of tomato chlorotic dwarf viroid based on isothermal reverse-transcription-recombinase polymerase amplification. Journal of virological methods, 236, 62-67. doi.org/10.1016/j.jviromet.2016.06.013
Reyes Gaige, A., Dung, J. K., & Weiland, J. E. (2018). A rapid, sensitive and field-deployable isothermal assay for the detection of Verticillium alfalfae. Canadian Journal of Plant Pathology, 40(3), 408-416. doi.org/10.1080/07060661.2018.1474262
Ahmed, F. A., Larrea-Sarmiento, A., Alvarez, A. M., & Arif, M. (2018). Genome-informed diagnostics for specific and rapid detection of Pectobacterium species using recombinase polymerase amplification coupled with a lateral flow device. Scientific reports, 8(1), 1-11. doi.org/10.1038/s41598-018-34275-0
Si Ammour, M., Bilodeau, G. J., Tremblay, D. M., Van der Heyden, H., Yaseen, T., Varvaro, L., & Carisse, O. (2017). Development of real-time isothermal amplification assays for on-site detection of Phytophthora infestans in potato leaves. Plant disease, 101(7), 1269-1277. doi.org/10.1094/PDIS-12-16-1780-RE
Kalischuk, M. L., Roberts, P. D., & Paret, M. L. (2020). A rapid fluorescence-based real-time isothermal assay for the detection of Cucurbit yellow stunting disorder virus in squash and watermelon plants. Molecular and Cellular Probes, 53, 101613. doi.org/10.1016/j.mcp.2020.101613
Wambua, L., Schneider, B., Okwaro, A., Wanga, J.O., Imali, O., Wambua, P.N., Agutu, L., Olds, C., Jones, C.S., Masiga, D. and Midega, C. (2017). Development of field-applicable tests for rapid and sensitive detection of Candidatus Phytoplasma oryzae. Molecular and cellular probes, 35, 44-56. doi.org/10.1016/j.mcp.2017.06.004
Srivastava, N., Kapoor, R., Kumar, R., Kumar, S., Saritha, R. K., Kumar, S., & Baranwal, V. K. (2019). Rapid diagnosis of Cucumber mosaic virus in banana plants using a fluorescence-based real-time isothermal reverse transcription-recombinase polymerase amplification assay. Journal of virological methods, 270, 52-58. doi.org/10.1016/j.jviromet.2019.04.024
Silva, G., Oyekanmi, J., Nkere, C. K., Bömer, M., Kumar, P. L., & Seal, S. E. (2018). Rapid detection of potyviruses from crude plant extracts. Analytical biochemistry, 546, 17-22. doi.org/10.1016/j.ab.2018.01.019
Kapoor, R., Srivastava, N., Kumar, S., Saritha, R. K., Sharma, S. K., Jain, R. K., & Baranwal, V. K. (2017). Development of a recombinase polymerase amplification assay for the diagnosis of banana bunchy top virus in different banana cultivars. Archives of virology, 162(9), 2791-2796. doi.org/10.1007/s00705-017-3399-9
TwistDx, “TwistAmp® DNA Amplification Kits Combined Instruction Manual,” TwistDx Limited, 2018.
Zou, Y., Mason, M. G., & Botella, J. R. (2020). Evaluation and improvement of isothermal amplification methods for point-of-need plant disease diagnostics. PloS one, 15(6), e0235216. doi.org/10.1371/journal.pone.0235216
Silva, G., Bömer, M., Nkere, C., Kumar, P. L., & Seal, S. E. (2015). Rapid and specific detection of Yam mosaic virus by reverse-transcription recombinase polymerase amplification. Journal of virological methods, 222, 138-144. doi.org/10.1016/j.jviromet.2015.06.011
Babujee, L., Witherell, R. A., Mikami, K., Aiuchi, D., Charkowski, A. O., & Rakotondrafara, A. M. (2019). Optimization of an isothermal recombinase polymerase amplification method for real-time detection of Potato virus YO and N types in potato. Journal of virological methods, 267, 16-21. doi.org/10.1016/j.jviromet.2019.02.006
Rojas, J. A., Miles, T. D., Coffey, M. D., Martin, F. N., & Chilvers, M. I. (2017). Development and application of qPCR and RPA genus-and species-specific detection of Phytophthora sojae and P. sansomeana root rot pathogens of soybean. Plant disease, 101(7), 1171-1181. doi.org/10.1094/PDIS-09-16-1225-RE
Lei, R., Kong, J., Qiu, Y., Chen, N., Zhu, S., Wang, X., & Wu, P. (2019). Rapid detection of the pathogenic fungi causing blackleg of Brassica napus using a portable real-time fluorescence detector. Food chemistry, 288, 57-67. doi.org/10.1016/j.foodchem.2019.02.089
Strayer-Scherer, A., Jones, J. B., & Paret, M. L. (2019). Recombinase polymerase amplification assay for field detection of tomato bacterial spot pathogens. Phytopathology, 109(4), 690-700. doi.org/10.1094/PHYTO-03-18-0101-R
Kappagantu, M., Villamor, D. E. V., Bullock, J. M., & Eastwell, K. C. (2017). A rapid isothermal assay for the detection of Hop stunt viroid in hop plants (Humulus lupulus), and its application in disease surveys. Journal of virological methods, 245, 81-85. doi.org/10.1016/j.jviromet.2017.04.002
Mekuria, T. A., Zhang, S., & Eastwell, K. C. (2014). Rapid and sensitive detection of Little cherry virus 2 using isothermal reverse transcription-recombinase polymerase amplification. Journal of virological methods, 205, 24-30. doi.org/10.1016/j.jviromet.2014.04.015
Villamor, D. E. V., & Eastwell, K. C. (2019). Multilocus characterization, gene expression analysis of putative immunodominant protein coding regions, and development of recombinase polymerase amplification assay for detection of ‘Candidatus Phytoplasma pruni’in Prunus avium. Phytopathology, 109(6), 983-992. doi.org/10.1094/PHYTO-09-18-0326-R
Cao, Y., Yan, D., Wu, X., Chen, Z., Lai, Y., Lv, L., Yan, F., Chen, J., Zheng, H. and Song, X. (2020). Rapid and visual detection of milk vetch dwarf virus using recombinase polymerase amplification combined with lateral flow strips. Virology journal, 17(1), 1-8. doi.org/10.1186/s12985-020-01371-5
Lu, X., Xu, H., Song, W., Yang, Z., Yu, J., Tian, Y., Jiang, M., Shen, D. and Dou, D. (2021). Rapid and simple detection of Phytophthora cactorum in strawberry using a coupled recombinase polymerase amplification–lateral flow strip assay. Phytopathology research, 3(1), 1-8. doi.org/10.1186/s42483-021-00089-8
Ivanov, A. V., Shmyglya, I. V., Zherdev, A. V., Dzantiev, B. B., & Safenkova, I. V. (2020). The challenge for rapid detection of high-structured circular RNA: Assay of potato spindle tuber viroid based on recombinase polymerase amplification and lateral flow tests. Plants, 9(10), 1369. doi.org/10.3390/plants9101369
Dai, T., Yang, X., Hu, T., Jiao, B., Xu, Y., Zheng, X., & Shen, D. (2019). Comparative evaluation of a novel recombinase polymerase amplification-lateral flow dipstick (RPA-LFD) assay, LAMP, conventional PCR, and leaf-disc baiting methods for detection of Phytophthora sojae. Frontiers in microbiology, 1884. doi.org/10.3389/fmicb.2019.01884
Boluk, G., Dobhal, S., Crockford, A. B., Melzer, M., Alvarez, A. M., & Arif, M. (2020). Genome-informed recombinase polymerase amplification assay coupled with a lateral flow device for in-field detection of Dickeya species. Plant Disease, 104(8), 2217-2224. doi.org/10.1094/PDIS-09-19-1988-RE
Dai, T., Hu, T., Yang, X., Shen, D., Jiao, B., Tian, W., & Xu, Y. (2019). A recombinase polymerase amplification-lateral flow dipstick assay for rapid detection of the quarantine citrus pathogen in China, Phytophthora hibernalis. PeerJ, 7, e8083. doi.org/10.7717/peerj.8083
Ju, Y., Li, C., Shen, P., Wan, N., Han, W., & Pan, Y. (2020). Rapid and visual detection of Verticillium dahliae using recombinase polymerase amplification combined with lateral flow dipstick. Crop Protection, 136, 105226. doi.org/10.1016/j.cropro.2020.105226
Ivanov, A. V., Safenkova, I. V., Drenova, N. V., Zherdev, A. V., & Dzantiev, B. B. (2020). Development of lateral flow assay combined with recombinase polymerase amplification for highly sensitive detection of Dickeya solani. Molecular and Cellular Probes, 53, 101622. doi.org/10.1016/j.mcp.2020.101622
Zhao, C., Sun, F., Li, X., Lan, Y., Du, L., Zhou, T., & Zhou, Y. (2019). Reverse transcription-recombinase polymerase amplification combined with lateral flow strip for detection of rice black-streaked dwarf virus in plants. Journal of virological methods, 263, 96-100. doi.org/10.1016/j.jviromet.2018.11.001
Jiao, Y., Xu, C., Li, J., Gu, Y., Xia, C., Xie, Q., ... & Wu, Y. (2020). Characterization and a RT-RPA assay for rapid detection of Chilli Veinal mottle virus (ChiVMV) in tobacco. Virology journal, 17(1), 1-9. doi.org/10.1186/s12985-020-01299-w
Zeng, R., Luo, J., Gao, S., Xu, L., Song, Z., & Dai, F. (2019). Rapid detection of Cucumber green mottle mosaic virus by reverse transcription recombinase polymerase amplification. Molecular and cellular probes, 43, 84-85. doi.org/10.1016/j.mcp.2018.12.005
Jiao, Y., Jiang, J., Wu, Y., & Xia, Z. (2019). Rapid detection of Cucumber green mottle mosaic virus in watermelon through a recombinase polymerase amplification assay. Journal of virological methods, 270, 146-149. doi.org/10.1016/j.jviromet.2019.05.008
Kim, N. Y., Oh, J., Lee, S. H., Kim, H., Moon, J. S., & Jeong, R. D. (2018). Rapid and specific detection of apple stem grooving virus by reverse transcription-recombinase polymerase amplification. The plant pathology journal, 34(6), 575. doi.org/10.5423/PPJ.NT.06.2018.0108
Babu, B., Washburn, B.K., Miller, S.H., Poduch, K., Sarigul, T., Knox, G.W., Ochoa-Corona, F.M. and Paret, M.L. (2017). A rapid assay for detection of Rose rosette virus using reverse transcription-recombinase polymerase amplification using multiple gene targets. Journal of virological methods, 240, 78-84. doi.org/10.1016/j.jviromet.2016.11.014
Wang, T. M., & Yang, J. T. (2019). Visual DNA diagnosis of tomato yellow leaf curl virus with integrated recombinase polymerase amplification and a gold-nanoparticle probe. Scientific reports, 9(1), 1-8. doi.org/10.1038/s41598-019-51650-7
Wang, Z., Zhang, J., Ekman, J. M., Kenis, P. J., & Lu, Y. (2010). DNA-mediated control of metal nanoparticle shape: one-pot synthesis and cellular uptake of highly stable and functional gold nanoflowers. Nano letters, 10(5), 1886-1891. doi.org/10.1021/nl100675p
Yuan, C., Tian, T., Sun, J., Hu, M., Wang, X., Xiong, E., Cheng, M., Bao, Y., Lin, W., Jiang, J. and Yang, C. (2020). Universal and naked-eye gene detection platform based on the clustered regularly interspaced short palindromic repeats/Cas12a/13a system. Analytical chemistry, 92(5), 4029-4037. doi.org/10.1021/acs.analchem.9b05597
Lau, H. Y., Wu, H., Wee, E. J., Trau, M., Wang, Y., & Botella, J. R. (2017). Specific and sensitive isothermal electrochemical biosensor for plant pathogen DNA detection with colloidal gold nanoparticles as probes. Scientific reports, 7(1), 1-7. doi.org/10.1038/srep38896
Lau, H. Y., Wang, Y., Wee, E. J., Botella, J. R., & Trau, M. (2016). Field demonstration of a multiplexed point-of-care diagnostic platform for plant pathogens. Analytical chemistry, 88(16), 8074-8081. doi.org/10.1021/acs.analchem.6b01551
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Wan Hawa Najibah Wan Rasni, Nazariyah Yahaya, Maryam Mohamed Rehan
This work is licensed under a Creative Commons Attribution 4.0 International License.
The copyright of this article will be vested to author(s) and granted the journal right of first publication with the work simultaneously licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0) license, unless otherwise stated.