The application of hurdle technology in extending the shelf life and improving the quality of fermented freshwater fish (Pekasam): A Review
DOI:
https://doi.org/10.33102/mjosht.v8i1.240Keywords:
Hurdle technology, fermentation, biogenic amines, starter culture, water activity, pH, antimicrobial spices, shelf life, qualityAbstract
Hurdle technology combines several preservation methods to secure the quality of foods by eliminating or controlling the growth of pathogens, making them last longer and, most importantly, safer for consumption. The hurdle approaches used for this Pekasam is microbially derived hurdle and physico-chemical hurdles. Inoculation of starter cultures with amine oxidase (AO) activity like lactic acid bacteria (LAB) in Pekasam is proven to reduce the accumulation of harmful biogenic amines, especially histamine, for up to 59.9%. This review also involves controlling the water activity and pH of Pekasam to a state where it inhibits the growth of microbes. This can be done by adding natural, cheap, and easy to find ingredients like lime juice (Citrus aurantifolia) to the basic Pekasam recipe. The presence of organic acids in the lime juice act as acidulants; it provides a low pH environment for microbes to retard their growth and therefore reduce the total plate count (TPC) whilst enhancing the flavour of Pekasam. However, in a long- ripened Pekasam, only the water activity hurdle is strengthened with time. Hence, a proper amount of salt is needed to sustain and maintain the water activity level below 0.94. The use of affordable herbs and spices with antimicrobial properties such as garlic, ginger and onion can prevent the proliferation of some pathogenic microbes, commonly found in Pekasam; thus, this helps in increasing the stability of the product. This review aims to outline the application of hurdle technology on fermented freshwater fish quality and shelf life. It focuses on recent accessible applications when combined, providing affordable food which helps those underprivileged people, especially during flash floods and other disruptive calamities such as the COVID-19 pandemic.
Downloads
References
Jabatan Meteorologi Malaysia (2021). [Online]. Available: https://www.met.gov.my/.
Floods in Malaysia on Jan 2021 (2021). [Online]. Available: https://reliefweb.int/disaster/fl-2021-000001-mys.
McGarry, J. Michigan State University Extension. (2021). Food safety before and after a flood. [Online]. Available: https://www.canr.msu.edu/news/food_safety_during_and_after_a_flood.
MyHealth Kementerian Kesihatan Malaysia (KKM) (2021). Flood and Risk of Disease. [Online]. Available: http://www.myhealth.gov.my/en/floods-risk-disease/.
Centers for Disease Control and Prevention. (2020). Keep Food and Water Safe After a Disaster or Emergency. [Online]. Available: https://www.cdc.gov/disasters/foodwater/facts.html.
Hisham, DG. Kementerian Kesihatan Malaysia (2019). Kenyataan Akhbar Larangan Penyediaan Makanan di Premis Makanan yang Dinaiki Air Banjir. [Online]. Available: https://kpkesihatan.com/2019/12/23/kenyataan-akhbar-kpk-23-disember-2019.
Romeli, R. (2021). Income Classification in Malaysia: What is B40, M40, and T20? [Online]. Available: https://www.iproperty.com.my/guides/what-is-b40-m40-t20-in-malaysia/.
Simler, K. World Bank Group (2020). From vulnerable to pandemic poor. [Online]. Available: https://blogs.worldbank.org/eastasiapacific/vulnerable-pandemic-poor.
Xiang, H., Sun-Waterhouse, D., Waterhouse, G. I., Cui, C., & Ruan, Z. (2019). Fermentation-enabled wellness foods: A fresh perspective. Food Science and Human Wellness, 8(3), 203-243. doi: 10.1016/j.fshw.2019.08.003
Tsironi, T., Houhoula, D., & Taoukis, P. (2020). Hurdle technology for fish preservation. Aquaculture and Fisheries, 5(2), 65-71. doi: 10.1016/j.aaf.2020.02.001
Leistner, L. (2000). Basic aspects of food preservation by hurdle technology. International journal of food microbiology, 55(1-3), 181-186. doi: 10.1016/S0168-1605(00)00161-6
Singh, S., & Shalini, R. (2016). Effect of hurdle technology in food preservation: a review. Critical reviews in food science and nutrition, 56(4), 641-649. doi: 10.1080/10408398.2012.761594
Erkmen, Osman, Bozoglu, T., & Faruk (2016). Food Preservation by Combination of Techniques (Hurdle Technology). Food Microbiology: Principles into Practice, chapter 9, pp. 1-14.
Giannakourou, M. C., & Tsironi, T. N. (2021). Application of Processing and Packaging Hurdles for Fresh-Cut Fruits and Vegetables Preservation. Foods, 10(4), 830. doi: 10.3390/foods10040830
Rutgers Food Innovation Centre (2019). COVID-19 Food Innovation Center Update. [Online]. Available: https://foodinnovation.rutgers.edu.
Azman, E. M. (2014). Characterisation of Local Ikan Pekasam and Development of Process for Production of Ikan Pekasam from Black Pomfret (Parastromateus Niger Bloch) (Doctoral dissertation, Universiti Putra Malaysia).
Rhee, S. J., Lee, J. E., & Lee, C. H. (2011, December). Importance of lactic acid bacteria in Asian fermented foods. In Microbial Cell Factories (Vol. 10, No. 1, pp. 1-13). BioMed Central. doi: 10.1186/1475-2859-10-S1-S5
Desniar, M. (2013). Characterization of lactic acid bacteria isolated from an Indonesian fermented fish (bekasam) and their antimicrobial activity against pathogenic bacteria. Emirates Journal of Food and Agriculture, 489-494. doi: 10.9755/ejfa.v25i6.12478
Huda, N. (2012). Indonesian Fermented Fish Products. Handbook of Animal-Based Fermented Food and Beverage Technology, vol. 41, 734–757.
Gould, G. W. (1996). Methods for preservation and extension of shelf life. International journal of food microbiology, 33(1), 51-64.
Gould, G.W. (1992). Ecosystems approach to food preservation. In Symposium 21: Ecosystems, Microbes, Food, edited by Board, R. G., Jones, D., Kroll, R. G., & Pettipher, G. L. Journal of Applied Bacteriology, 73,58-68.
Board, R.G. & Gould, G.W. (1991). Future prospects. In Food Preservatives edited by Russell, N.J. & Gould, G.W., chapter, 13, 267-284.
Mansor, A. B., Kahar, A. A., Rahman, S. A., Lelamurni, D., & Razak, A. (2014). Distribution and Characterization of Indigenous Microbes from Malaysian Fermented Fish Products. Functional Food Culture.
Muryany, I. M., Salwany, I. M., Ghazali, A. R., Hing, H. L., & Fadilah, N. R. (2017). Identification and characterization of the Lactic Acid Bacteria isolated from Malaysian fermented fish (Pekasam). International Food Research Journal, 24(2), 868.
Axelsson, L., Bjerke, G. A., McLeod, A., Berget, I., & Holck, A. L. (2020). Growth behavior of Listeria monocytogenes in a traditional Norwegian fermented fish product (Rakfisk), and its inhibition through bacteriophage addition. Foods, 9(2), 119. doi: 10.3390/foods9020119
Gragg, S. E., & Brashears, M. M. (2014). Hurdle Technology. In Encyclopedia of Meat Sciences (pp. 345-347). Elsevier Inc.. doi: 10.1016/B978-0-12-384731-7.00134-3
Leistner, L. (2000). Basic aspects of food preservation by hurdle technology. International journal of food microbiology, 55(1-3), 181-186. doi: 10.1016/S0168-1605(00)00161-6
Deak, T. (2014). Thermal Treatment. Food Safety Management. A Practical Guide for the Food Industry, 423–442.
Fontanesi, L. (2017). Meat Authenticity and Traceability. In Lawrie's Meat Science: Eighth Edition, p. 621 - 622.
Saroya, H. K. (2017). Innovative Non-Thermal Food Processing Technologies Used By The Food Industry In The United States.
Liu, N., Zhu, Q., Zeng, X., Yang, B., Liang, M., Hu, P., ... & Zhou, J. (2019). Influences of pulsed light-UV treatment on the storage period of dry-cured meat and shelf life prediction by ASLT method. Journal of food science and technology, 56(4), 1744-1756. doi: 10.1007/s13197-019-03603-1
López-Malo, A., & Palou, E. (2004). Ultraviolet light and food preservation. Novel Food Processing Technologies, vol. 18, p. 405–421.
Erkmen, O., & Bozoglu, F. (2016). Food Preservation by Combination of Techniques (Hurdle Technology). Chap 9. doi: 10.1002/9781119237860.ch35.
Fang, Z., Zhao, Y., Warner, R. D., & Johnson, S. K. (2017). Active and intelligent packaging in meat industry. Trends in Food Science & Technology, 61, 60-71. doi: 10.1016/j.tifs.2017.01.002
Bhagath, Y. B., & Manjula, K. (2019). Influence of composite edible coating systems on preservation of fresh meat cuts and products: a brief review on their trends and applications. International Food Research Journal, 26(2).
Erkmen, O., & Bozoglu, T. F. (2016). Food preservation by reducing water activity. Food microbiology: Principles into practice, 44-58.
Patrakova, I., Gurinovich, G., Myshalova, O., & Salishcheva, O. (2020, January). Reduction Potential of Meat, Depending on the Curing Composition. In International Scientific Conference The Fifth Technological Order: Prospects for the Development and Modernization of the Russian Agro-Industrial Sector (TFTS 2019) (pp. 321-324). Atlantis Press.
Aotearoa, H. K., Ministry for Primary Industries (2021). [Online]. Available: https://www.mpi.govt.nz/food-safety-home/food-additives-preservatives/preservatives-food-nitrates-nitrites/.
Jafari, M., & Emam-Djomeh, Z. (2007). Reducing nitrite content in hot dogs by hurdle technology. Journal of Food Control.18(12):1488-1493.
doi: 10.1016/j.foodcont.2006. 11. 007
Fuhrman, E., The National Provisioner (2016). Phosphates in meat and poultry: uniquely functional, but under fire. [Online]. Available: https://www.provisioneronline.com/articles/102894-phosphates-in-meat-and-poultry-uniquely-functional-but-under-fire.
Martillanes, S., Rocha-Pimienta, J., Cabrera-Bañegil, M., Martín-Vertedor, D., & Delgado-Adámez, J. (2017). Application of phenolic compounds for food preservation: Food additive and active packaging. Phenolic compounds–Biological activity. London, UK: IntechOpen, 39-58.
Todokoro, T., Kashihara, H., Fukuda, K., Tsutsumi, H., Hata, Y., & Ishida, H. (2021). Inhibition of lipid oxidation and hexanal production in cooked meats by microbial iron chelator deferriferrichrysin from rice wine. Journal of Food Processing and Preservation, 45(11), e15943. doi: 10.1111/jfpp.15943
Shukla, S., Park, H. K., Kim, J. K., & Kim, M. (2010). Determination of biogenic amines in Korean traditional fermented soybean paste (Doenjang). Food and Chemical Toxicology, 48(5), 1191-1195. doi: 10.1016/j.fct.2010.01.034
Taylor, S. L., Stratton, J. E., & Nordlee, J. A. (1989). Histamine poisoning (scombroid fish poisoning): an allergy-like intoxication. Journal of Toxicology: Clinical Toxicology, 27(4-5), 225-240. doi: 10.3109/15563658908994420
Chong, C. Y., Abu Bakar, F., Russly, A. R., Jamilah, B., & Mahyudin, N. A. (2011). The effects of food processing on biogenic amines formation. International Food Research Journal, 18(3).
Etkind, P., Wilson, M. E., Gallagher, K., & Cournoyer, J. (1987). Bluefish-associated scombroid poisoning: an example of the expanding spectrum of food poisoning from seafood. Jama, 258(23), 3409-3410. doi: 10.1001/jama.1987.03400230069034
Vinci, G., & Antonelli, M. L. (2002). Biogenic amines: quality index of freshness in red and white meat. Food control, 13(8), 519-524. doi: 10.1016/S0956-7135(02)00031-2
Maijala, R., & Eerola, S. (1993). Contaminant lactic acid bacteria of dry sausages produce histamine and tyramine. Meat science, 35(3), 387-395. doi: 10.1016/0309-1740(93)90043-H
Jairath, G., Singh, P. K., Dabur, R. S., & Rami. M. (2015). Biogenic amines in meat and meat products and its public health significance: a review. Journal of Food Science and Technology. 52(11). ISSN 0022-1155.
Latorre-Moratalla, M. L., Bover-Cid, S., Talon, R., Garriga, M., Zanardi, E., Ianieri, A., ... & Vidal-Carou, M. C. (2010). Strategies to reduce biogenic amine accumulation in traditional sausage manufacturing. LWT-Food Science and Technology, 43(1), 20-25. doi: 10.1016/j.lwt.2009.06.018
Ruiz-Capillas, C., & Jiménez-Colmenero, F. (2005). Biogenic amines in meat and meat products. Critical Reviews in food Scince and Nutrition, 44(7-8), 489-599. doi: 0.1080/10408690490489341
Ezzat, M. A., Zare, D., Karim, R., & Ghazali, H. M. (2015). Trans-and cis-urocanic acid, biogenic amine and amino acid contents in ikan pekasam (fermented fish) produced from Javanese carp (Puntius gonionotus) and black tilapia (Oreochromis mossambicus). Food chemistry, 172, 893-899. doi: 0.1016/j.foodchem.2014.09.158
Santos, M. S. (1996). Biogenic amines: their importance in foods. International journal of food microbiology, 29(2-3), 213-231. doi: 10.1016/0168-1605(95)00032-1
Kongkiattikajorn, J. (2015). Potential of starter culture to reduce biogenic amines accumulation in som-fug, a Thai traditional fermented fish sausage. Journal of Ethnic Foods, 2(4), 186-194. doi: 10.1016/j.jef.2015.11.005
Riebroy, S., Benjakul, S., & Visessanguan, W. (2008). Properties and acceptability of Som-fug, a Thai fermented fish mince, inoculated with lactic acid bacteria starters. LWT-Food Science and Technology, 41(4), 569-580. doi: 10.1016/j.lwt.2007.04.014
Zang, J., Xu, Y., Xia, W., & Regenstein, J. M. (2020). Quality, functionality, and microbiology of fermented fish: a review. Critical Reviews in Food Science and Nutrition, 60(7), 1228-1242. doi: 10.1080/10408398.2019.1565491
Hugas, M., Garriga, M., Aymerich, M. T., & Monfort, J. M. (1995). Inhibition of Listeria in dry fermented sausages by the bacteriocinogenic Lactobacillus sake CTC494. Journal of Applied Bacteriology, 79(3), 322-330. doi: 10.1111/j.1365-2672.1995.tb03144.x
Hugas, M., Garriga, M., Aymerich, T., & Monfort, J. M. (1993). Biochemical characterization of lactobacilli from dry fermented sausages. International journal of food microbiology, 18(2), 107-113. doi: 10.1016/0168-1605(93)90215-3
Suzzi, G., & Gardini, F. (2003). Biogenic amines in dry fermented sausages: a review. International journal of food microbiology, 88(1), 41-54. doi: 10.1016/S0168-1605(03)00080-1
Crudele, M. A., Favati, F., ... & Suzzi, G. (2001). Effects of pH, temperature and NaCl concentration on the growth kinetics, proteolytic activity and biogenic amine production of Enterococcus faecalis. International journal of food microbiology, 64(1-2), 105-117. doi: 10.1016/S0168-1605(00)00445-1
Bover-Cid, S., Hugas, M., Izquierdo-Pulido, M., & VIDAL-CAROU, M. C. (2000). Reduction of biogenic amine formation using a negative amino acid–decarboxylase starter culture for fermentation of Fuet sausages. Journal of Food Protection, 63(2), 237-243. doi: 10.4315/0362-028X-63.2.237
[63] Komprada, T., Sládková, P., & Dohnal, V. (2009). Biogenic amine content in dry fermented sausages as influenced by a producer, spice mix, starter culture, sausage diameter and time of ripening. Meat Science, 83(3), 534-542. doi: 10.1016/j.meatsci.2009.07.002.
Zhao, Y., Sang, X., Hao, H., Bi, J., Zhang, G., & Hou, H. (2021). Novel starter cultures Virgibacillus spp. selected from grasshopper sub shrimp paste to inhibit biogenic amines accumulation. AMB Express, 11(1), 1-11. doi: 0.1186/s13568-021-01186-9
ZaMaN, M. Z., Bakar, F. A., SelaMat, J., & Bakar, J. (2010). Occurrence of biogenic amines and amines degrading bacteria in fish sauce. Czech Journal of Food Sciences, 28(5), 440-449. doi: 10.17221/312/2009-CJFS
Zaman, M. Z., Bakar, F. A., Jinap, S., & Bakar, J. (2011). Novel starter cultures to inhibit biogenic amines accumulation during fish sauce fermentation. International Journal of Food Microbiology, 145(1), 84-91. doi: 10.1016/j.ijfoodmicro.2010.11.031
Mah, J. H., & Hwang, H. J. (2009). Inhibition of biogenic amine formation in a salted and fermented anchovy by Staphylococcus xylosus as a protective culture. Food Control, 20(9), 796-801. doi: 10.1016/j.foodcont.2008.10.005
Dapkevicius, M. L. E., Nout, M. R., Rombouts, F. M., Houben, J. H., & Wymenga, W. (2000). Biogenic amine formation and degradation by potential fish silage starter microorganisms. International Journal of Food Microbiology, 57(1-2), 107-114. doi: 10.1016/S0168-1605(00)00238-5
Lu, S., Xu, X., Zhou, G., Zhu, Z., Meng, Y., & Sun, Y. (2010). Effect of starter cultures on microbial ecosystem and biogenic amines in fermented sausage. Food control, 21(4), 444-449. doi: 10.1016/j.foodcont.2009.07.008
González-Fernández, C., Santos, E. M., Jaime, I., & Rovira, J. (2003). Influence of starter cultures and sugar concentrations on biogenic amine contents in chorizo dry sausage. Food Microbiology, 20(3), 275-284. doi: 10.1016/S0740-0020(02)00157-0
Eerola, S., Hinkkanen, R., Lindfors, E., & Hirvi, T. (1993). Liquid chromatographic determination of biogenic amines in dry sausages. Journal of AOAC international, 76(3), 575-577. doi: 10.1093/jaoac/76.3.575
Chong, C. Y., Abu Bakar, F., Russly, A. R., Jamilah, B., & Mahyudin, N. A. (2011). The effects of food processing on biogenic amines formation. International Food Research Journal, 18(3).
Food and Drug Administration (2014). Water activity in Foods. [Online]. Available: https://www.fda.gov/inspections-compliance-enforcement-and-criminal-investigations/inspection-technical-guides/water-activity-aw-foods.
Pittia, P. & Antonello, P. (2016). Regulating Safety of Traditional and Ethnic Foods. Safety by Control of Water Activity: Drying, Smoking, and Salt or Sugar Addition. Chapter 2, p. 7-28.
Mermelstein, N. H. (2010). Improving soybean oil. Journal of Food Technology, 64(8), 72–77.
Barbosa-Cánovas, G. V., Fontana, A. J., Schmidt, S. J., & Labuza, T. P. (2020). Water Activity in Foods: Fundamentals and Applications, 2nd Edition. Blackwell Publishing Ltd. doi: 10.1002/9780470376454.
SPER Scientific Direct (2021). The Importance of pH in Food Quality and Production. [Online]. Available: https://sperdirect.com/blogs/news/the-importance-of-ph-in-food-quality-and-production.
Hall, H. K., Karem, K. L., & Foster, J. W. (1995). Molecular responses of microbes to environmental pH stress. Advances in microbial physiology, 37, 229-272. doi: 10.1016/S0065-2911(08)60147-2
Services, H. (2001). Evaluation and Definition of Potentially Hazardous Foods. A Report of the Institute of Food Technologists. Comprehensive Reviews in Food Science and Food Safety, pp. 223.
Institute of Food Technologies (2001). Evaluation and Definition of Potentially Hazardous Foods - Full Report. Evaluation and Definition of Potentially Hazardous Foods, 2(223), 1–109. http://www.fda.gov/.
Brian, A. N. (2002). Historical Origins of Food Preservation. National Center for Home Food Preservation. [Online]. Available: https://nchfp.uga.edu/publications/nchfp/factsheets/food_pres_hist.html.
Al-Muhtaseb, A. H., McMinn, W. A. M., & Magee, T. R. A. (2002). Moisture sorption isotherm characteristics of food products: a review. Food and bioproducts processing, 80(2), 118-128. doi: 10.1205/09603080252938753
Aibinu, I., Adenipekun, T., Adelowotan, T., Ogunsanya, T., & Odugbemi, T. (2007). Evaluation of the antimicrobial properties of different parts of Citrus aurantifolia (lime fruit) as used locally. African Journal of Traditional, Complementary, and Alternative Medicines, 4(2), 185.
Falade, O. S., Sowunmi, O. R., Oladipo, A., Tubosun, A., & Adewusi, S. R. (2003). The level of organic acids in some Nigerian fruits and their effect on mineral availability in composite diets. Pak. J. Nutr, 2(2), 82-83.
Gurtler, J. B., & Mai, T. L. (2014). PRESERVATIVES| Traditional preservatives–Organic acids.
Purnomo, H., & Suprayitno, E. (2013). Quality of fermented fresh water fish (Wadi Betok) added with palm (Arenga pinnata) sugar and Lime (Citrus aurantifolia) juice. International Food Research Journal, 20(5), 2849.
Henney, J. E., Taylor, C. L., & Boon, C. S. (2010). Taste and flavor roles of sodium in foods: A unique challenge to reducing sodium intake. Strategies to Reduce Sodium Intake in The United States; National Academies Press: Washington, DC, USA.
Shadbolt, C., Ross, T., & McMeekin, T. A. (2001). Differentiation of the effects of lethal pH and water activity: food safety implications. Letters in Applied Microbiology, 32(2), 99-102. doi: 10.1046/j.1472-765x.2001.00862.x
Keisam, S., Tuikhar, N., Ahmed, G., & Jeyaram, K. (2019). Toxigenic and pathogenic potential of enteric bacterial pathogens prevalent in the traditional fermented foods marketed in the Northeast region of India. International journal of food microbiology, 296, 21-30. doi: 10.1016/j.ijfoodmicro.2019.02.012
Hassan, Z., Purwati, E., Radu, S., Rahim, R. A., Rahim, R. A., & Rusul, G. (2001). Prevalence of Listeria spp and Listeria monocytogenes in meat and fermented fish in Malaysia. Southeast Asian journal of tropical medicine and public health, 32(2), 402-407.
Ravindran, P. N. (2017). The encyclopedia of herbs and spices. vol. 1, xxi. Wallingford (UK): CAB International. [Online]. Available: https://www.cabdirect.org.
Spencer, M. (2020). The differences between spices and herbs. [Online]. Available: https://www.almanac.com/difference-between-herbs-and-spices.
Deans, S. G., & Ritchie, G. (1987). Antibacterial properties of plant essential oils. International journal of food microbiology, 5(2), 165-180. doi: 10.1016/0168-1605(87)90034-1
Beuchat, L. R. (1989). Antimicrobials occurring naturally in foods. Food Technol., 134-142.
Beuchat, L. R. (1994). Antimicrobial properties of spices and their essential oils. Nat. Antimicrob. Syst. Food Preserv., 12, 257-262.
Nakatani, N. (1994). Antioxidative and antimicrobial constituents of herbs and spices. Spices, herbs and edible fungi.
Lai, P. K., & Roy, J. (2004). Antimicrobial and chemopreventive properties of herbs and spices. Current medicinal chemistry, 11(11), 1451-1460. doi: 10.2174/0929867043365107
Pruthi, J. S., & JS, P. (1980). Spices and condiments: chemistry, microbiology, technology.
Dillon, V. M., Board, R. G., editors. (1994). Natural Antimicrobial Systems and Food Preservation. Journal of Applied Bacteriology, 54, 383–389.
Martínez-Graciá, C., González-Bermúdez, C. A., Cabellero-Valcárcel, A. M., Santaella-Pascual, M., & Frontela-Saseta, C. (2015). Use of herbs and spices for food preservation: advantages and limitations. Current opinion in food science, 6, 38-43. doi: 10.1016/j.cofs.2015.11.011
Silva, F., & Domingues, F. C. (2017). Antimicrobial activity of coriander oil and its effectiveness as food preservative. Critical reviews in food science and nutrition, 57(1), 35-47. doi: 0.1080/10408398.2013.847818
Ghorai, S. M. (2020) A humble recipe of 3 spices to slacken COVID-19 scare. [Online]. Available: https://www.downtoearth.org.in/blog/food/a-humble-recipe-of-3-spices-to-slacken-COVID-19-scare.
Nejad, A., Shabani, S., Bayat, M., Hosseini, S.E. (2014). Antibacterial effect of aqueous garlic extract on Staphylococcus aureus in hamburger. Jundishapur journal of microbiology, vol. 11, pp. 13 - 134.
Shafiur Rahman, M., Ibrahim Al-Sheibani, H., Hamad Al-Riziqi, M., Mothershaw, A., Guizani, N., & Bengtsson, G. (2006). Assessment of the anti-microbial activity of dried garlic powders produced by different methods of drying. International Journal of Food Properties, 9(3), 503-513. doi: 10.1080/10942910600596480
Rees, L. P., Minney, S. F., Plummer, N. T., Slater, J. H., & Skyrme, D. A. (1993). A quantitative assessment of the antimicrobial activity of garlic (Allium sativum). World Journal of Microbiology and Biotechnology, 9(3), 303-307. doi: 10.1007/BF00383068
Leuschner, R. G., & Ielsch, V. (2003). Antimicrobial effects of garlic, clove and red hot chilli on Listeria monocytogenes in broth model systems and soft cheese. International journal of food sciences and nutrition, 54(2), 127-133. doi: 10.1080/0963748031000084070
Ting, W. E., & DEIBEL, K. E. (1991). Sensitivity of Listeria monocytogenes to spices at two temperatures. Journal of Food Safety, 12(2), 129-137. doi: 10.1111/j.1745-4565.1991.tb00071.x
Hao, Y. Y., Brackett, R. E., & Doyle, M. P. (1998). Inhibition of Listeria monocytogenes and Aeromonas hydrophila by plant extracts in refrigerated cooked beef. Journal of Food Protection, 61(3), 307-312. doi: 10.4315/0362-028X-61.3.307
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Nadhira Hananiah, Alina Abdul Rahim
This work is licensed under a Creative Commons Attribution 4.0 International License.
The copyright of this article will be vested to author(s) and granted the journal right of first publication with the work simultaneously licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0) license, unless otherwise stated.