Molecular Docking of Natural Alkaloids with Bcl-xL Protein in The Apoptosis Process

Authors

  • Noraziah Nordin Department of Basic Medical Sciences 1, Faculty of Medicine & Health Sciences, Universiti Sains Islam Malaysia, 71800, Nilai, Negeri Sembilan, Malaysia.
  • Wan Noraini Wan Sulaiman Department of Basic Medical Sciences 1, Faculty of Medicine & Health Sciences, Universiti Sains Islam Malaysia, 71800, Nilai, Negeri Sembilan, Malaysia. https://orcid.org/0000-0003-2758-2074
  • Marjanu Hikmah Elias Department of Basic Medical Sciences 1, Faculty of Medicine & Health Sciences, Universiti Sains Islam Malaysia, 71800, Nilai, Negeri Sembilan, Malaysia.

DOI:

https://doi.org/10.33102/mjosht.v10i2.406

Keywords:

Bcl-xL protein, Alkaloids, Docking, AutoDock Vina, cancer chemotherapy

Abstract

Background: The anti-apoptotic protein Bcl-xL is a viable target for cancer therapy due to its critical role in cancer formation and resistance to chemotherapy. Insights into Bcl-xL’s role have spurred the development of a new category of cancer drugs called Bcl-xL inhibitors, which mimic the BH3-only protein to cause apoptosis. It could be initiated using alkaloids, owing to their remarkable biological characteristics. Alkaloids, among the biggest obtainable from plants, possess a distinctive structure characterized by the presence of a nitrogen atom in various positions within the molecule. Objective: In the current study, the potential of various alkaloids as Bcl-xL inhibitors was investigated through a molecular docking study. Methods: AutoDock Vina software was used to perform docking simulations of the alkaloids. Results: Ten alkaloids/Bcl-xL protein complexes demonstrated strong binding affinities less than -8.0 kcal/mol-1. These complexes include phaenthine (26), 4,5-Dioxoaporphine (1), anonaine (2), atherospermidine (4), limacine (14), liriodenine (16), monomargine (18), ouregidione (24), oxostephanine (25), and taliscanine (29) as the ligand of Bcl-xL protein. Notably, the complexes of Bcl-xL/dicentrinone (10), ouregidione (24), stepharine (28), and taliscanine (29) displayed three to four hydrogen bonds along with hydrophobic contacts. Conclusion: These results suggest that certain alkaloids could act as potential Bcl-xL inhibitors, mimicking BH3-only proteins and thereby potentially triggering apoptosis during cancer treatment.

Downloads

Download data is not yet available.

References

M. Manzoni, and M. Rollini, “Biosynthesis and biotechnological production of statins by filamentous fungi and application of these cholesterol-lowering drugs”, Appl Microbiol Biotechnol., vol. 58, pp. 555-564, Apr. 2002.

A. M. Clark. “Natural products as a resource for new drugs”, Pharm Res., vol. 13, pp. 1133-1144, Aug. 1996.

G. Guerriero, R. Berni, J.A. Muñoz-Sanchez, F. Apone, E.M. Abdel-Salam, A.A. Qahtan, A.A. Alatar, C. Cantini, G. Cai, J.F. Hausman, K.S. Siddiqui, S.M.T. Hernández-Sotomayor, and M. Faisal, “Production of Plant Secondary Metabolites: Examples, Tips and Suggestions for Biotechnologists”, Genes, vol. 9 (6), pp. 309, Jun. 2018.

S. Bhambhani, K.R. Kondhare, and A.P. Giri, 2021. “Diversity in chemical structures and biological properties of plant alkaloids,” Molecules, vol. 26(11), pp. 3374, Jun. 2021.

M. Mazid, T.A. Khan, and F. Mohammad, “Role of secondary metabolites in defense mechanisms of plants”, Biol and Med, vol. 3(2), pp. 232-249. 2011

J.J. Lu, J.L. Bao, X.P. Chen, M. Huang, and Y.T. Wang, “Alkaloids isolated from natural herbs as the anticancer agents”, Evid Based Complement Alternat Med., vol. 2012, pp. 485042, Oct. 2012.

P.E. Czabotar, G. Lessene, A. Strasser, J.M. Adams, “Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy”, Nat Rev Mol Cell Biol, vol. 15(1), pp. 49-63, Jan. 2014.

M. Suzuki, R.J. Youle, N. Tjandra, “Structure of Bax: coregulation of dimer formation and intracellular localization’, Cell, vol. 103(4), pp. 645-654, Nov. 2000.

M. Kvansakul, and M. G. Hinds, “The Bcl-2 family: structures, interactions and targets for drug discovery”, Apoptosis, vol. 20(2), pp. 136-150, Feb. 2015.

J. M. Adam, and S. Cory, “The BCL-2 arbiters of apoptosis and their growing role as cancer targets”, Cell Death Differ., vol. 25(1), pp. 27-36. Jan. 2018.

M. Jullien, P. Gomez-Bougie, D. Chiron, and C. Touzeau, “Restoring apoptosis with BH3 mimetics in mature B-cell malignancies”, Cells, vol. 9(3), pp. 717, Mar. 2020.

R. Liu, C. Page, D. R. Beidler, M. S. Wicha, and G. Núñez, “Overexpression of Bcl-x(L) promotes chemotherapy resistance of mammary tumors in a syngeneic mouse model,” Am J Pathol, vol. 155(6), pp. 1861-1867. Dec. 1999.

A. S. S. C. Lúcio, G. R. G. da Silva Almeida, E. V. L. Da-Cunha, J. F. Tavares, and J. M. Barbosa Filho. “Alkaloids of the Annonaceae: occurrence and a compilation of their biological activities”, The alkaloids: Chem Biol, vol. 74, pp. 233-409. Jan. 2015.

O. Trott, and A. J. Olson, “AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading”, J Comput Chem, vol. 31(2), pp. 455-461. Jan. 2010.

M. Mangal, M. I. Khan, and S. M. Agarwal, “Acetogenins as potential anticancer agents”, Anticancer Agents Med Chem, vol. 16(2), pp. 138-159, Feb. 2015.

D. Systèmes, and Biovia, Discovery studio modeling environment. San Diego, CA, USA: Dassault Systèmes Biovia 2016

T. V. Pyrkov, I. V. Ozerov, E. D. Balitskaya, and R. G. Efremov, “Molecular docking: The role of noncovalent interactions in the formation of protein-nucleotide and protein-peptide complexes”, Russ J Bioorganic Chem, vol. 36, pp. 446-455. Jul. 2010.

N. Nordin, K. Khimani, and M. F. Abd Ghani, “Acetogenins Exhibit Potential Bcl-xL Inhibitor for the Induction of Apoptosis in the Molecular Docking Study”, Curr Drug Discov Technol., vol. 18(6), pp. 98-108. Nov. 2021.

B. A. Fasihuddin, V. Shanty, and A. M. Sharif, Phaeanthine and limacine from phaeanthus crassipetalus Becc. 1991.

F. G. Avci, B. Atas, G. G. Toplan, C. Gurer, and B. S. Akbulut, “Antibacterial and antifungal activities of isoquinoline alkaloids of the Papaveraceae and Fumariaceae families and their implications in structure–activity relationships”, Studies in Natural Products Chemistry, vol. 70, pp. 87-118. Jan. 2021.

G. Lessene, P. E. Czabotar, B. E. Sleebs BE, K. Zobel, K. N. Lowes, J. M. Adams, J. B. Baell, P. M. Colman, K. Deshayes, W. J. Fairbrother, and J. A Flygare, “Structure-guided design of a selective BCL-X(L) inhibitor”, Nat Chem Biol, vol. 9(6), pp. 390-397. Jun. 2013.

Z. F. Tao, L. Hasvold, L. L. Wang, A. M. Petros, C. H. Park, E. R. Boghaert, N. D. Catron, J. Chen, P.M. Colman, and P. E. Czabotar, “Discovery of a potent and selective Bcl-xL inhibitor with in vivo activity”, ACS Med Chem Lett, vol. 5(10), pp. 1088-1093. Oct. 2014.

V. M. A. S. Grinevicius, K. S. Andrade, N. S. R. S Mota, L. C. Bretanha, K. B. Felipe KB, S. R. Ferreira, and R. C. Pedrosa, “CDK2 and Bcl-xL inhibitory mechanisms by docking simulations and anti-tumor activity from piperine enriched supercritical extract”, Food Chem Toxicol, vol. 132, pp. 110644. Oct. 2019.

B. E. Sleebs, P. E. Czabotar, W. J. Fairbrother, W. D. Fairlie, J. A. Flygare, D. C. Huang, W. J. Kersten, M. F. Koehler, G. Lessene, K. Lowes, and J. P. Parisot, “Quinazoline sulfonamides as dual binders of the proteins B-cell lymphoma 2 and B-cell lymphoma extra-long with potent proapoptotic cell-based activity”, J Med Chem, vol. 54(6), pp. 1914-1926. Mar. 2011.

G. M. Schroeder, D. Wei, P. Banfi, Z. W. Cai, J. Lippy, M. Menichincheri, M. Modugno, J. Naglich, B. Penhallow, H. L. Perez, and J. Sack, “Pyrazole and pyrimidine phenylacylsulfonamides as dual Bcl-2/Bcl-xL antagonists”, Bioorg Med Chem Lett, vol. 22(12): 3951-3956. Jun. 2012.

S. Fulda, and G. Kroemer, “Mitochondria as therapeutic targets for the treatment of malignant disease”, Antioxid Redox Signal, vol.15(12), pp. 2937-2949. Dec. 2011.

Downloads

Published

2024-10-08

How to Cite

Noraziah Nordin, Wan Noraini Wan Sulaiman, & Marjanu Hikmah Elias. (2024). Molecular Docking of Natural Alkaloids with Bcl-xL Protein in The Apoptosis Process. Malaysian Journal of Science Health & Technology, 10(2), 139–146. https://doi.org/10.33102/mjosht.v10i2.406

Issue

Section

Medical

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.