The Classification of Duckweed and Its Bacterial Community: A Review
DOI:
https://doi.org/10.33102/mjosht.v8i1.238Keywords:
bacteria, duckweed, endophytic bacteria, contamination, epiphytic bacteriaDownloads
References
Roy, F., Cosh, R., Hunt, K., & Rudd, L. (2016). Algae and Aquatic Plant. 24. Rushlau, K. (2019). Mankai duckweed plant shows potential as a superfood. Retrieved January 16, 2021, from https://www.integrativepractitioner.com/herbal-botanical/news/2019-08-06-mankai-duckweed-superfood
Afzal, Imran, et al. Plant beneficial endophytic bacteria: mechanisms, diversity, host range and genetic determinants. Microbiological research 221 (2019): 36-49. doi: 10.1016/j.micres.2019.02.001
Abdulkhair, Waleed M., and Mousa A. Alghuthaymi. Plant pathogens. Plant Growth 49 (2016). doi: 10.5772/65325
Charette, Matthew A., et al. Radium isotope distributions during the US GEOTRACES North Atlantic cruises. Marine Chemistry 177 (2015): 184-195. doi: 10.1016/j.marchem.2015.01.001
Kumar, A., et al. Anti-diabetic Activity of Ethanolic Extract of Achyranthes aspera Leaves in Streptozotocin induced diabetic rats. Journal of Pharmacy Research 4.7 (2011): 3124-3125. doi: 4(7) 3124-3125.
Kiran, B. R., Aparna Hamsa, and E. T. Puttaiah. Aquatic and marshy plants and their economic importance in Bhadra Reservoir Project Region, Karnataka. Nature Environment and Pollution Technology 6.3 (2007): 429. doi: 6(3), 429–432.
Sonta, Marcin, Anna Rekiel, and Martyna Batorska. Use of duckweed (Lemna L.) in sustainable livestock production and aquaculture–a review. Annals of Animal Science 19.2 (2019): 257-271. doi: 10.2478/aoas-2018-0048
HPA. (2009). Guidelines for Assessing the Microbiological Safety of Ready-to-Eat Foods Placed on the Market. Health Protection Agency, London., (November), 33.
de Beukelaar, Myrthe FA, et al. Duckweed as human food. The influence of meal context and information on duckweed acceptability of Dutch consumers. Food quality and preference 71 (2019): 76-86. doi: 10.1016/j.foodqual.2018.06.005
Muerdter, Claire P., and Gregory H. LeFevre. Synergistic Lemna duckweed and microbial transformation of imidacloprid and thiacloprid neonicotinoids. Environmental Science & Technology Letters 6.12 (2019): 761-767. doi: 10.1021/acs.estlett.9b00638
Appenroth, Klaus-J., et al. Nutritional value of duckweeds (Lemnaceae) as human food. Food chemistry 217 (2017): 266-273. doi: 10.1016/j.foodchem.2016.08.116
Alegbeleye, Oluwadara Oluwaseun, Ian Singleton, and Anderson S. Sant’Ana. Sources and contamination routes of microbial pathogens to fresh produce during field cultivation: A review. Food microbiology 73 (2018): 177-208. doi: 10.1016/j.fm.2018.01.003
Zhang, Kun, et al. The logistic growth of duckweed (Lemna minor) and kinetics of ammonium uptake. Environmental technology 35.5 (2014): 562-567. doi: 10.1080/09593330.2013.837937
Cabrera, Lidia I., et al. Phylogenetic relationships of aroids and duckweeds (Araceae) inferred from coding and noncoding plastid DNA. American Journal of Botany 95.9 (2008): 1153-1165. doi: 10.3732/ajb.0800073
Bog, Manuela, et al. A taxonomic revision of Lemna sect. Uninerves (Lemnaceae). Taxon 69.1 (2020): 56-66. doi: doi.org/10.1002/tax.12188
Wang, Wenqin, Randall A. Kerstetter, and Todd P. Michael. Evolution of genome size in duckweeds (Lemnaceae). J Bot 2011.570319 (2011): 570319. doi: i:10.1155/2011/570319
Les, Donald H., and Daniel J. Crawford. Landoltia (Lemnaceae), a new genus of duckweeds. Novon (1999): 530-533. doi: 10.2307/3392157
Borisjuk, N., et al. Assessment, validation and deployment strategy of a two barcode protocol for facile genotyping of duckweed species. Plant Biology 17 (2015): 42-49. doi: 10.1111/plb.12229
Zhang, Li-Min, et al. Growth and morphological responses of duckweed to clonal fragmentation, nutrient availability, and population density. Frontiers in Plant Science 11 (2020): 618. doi: 10.3389/fpls.2020.00618
Kim, InSun. Cellular Features of the Fronds and Turions in Spirodela polyrhiza. Applied Microscopy 43.4 (2013): 140-145. doi: 10.9729/AM.2013.43.4.140
Les, Donald H., et al. Phylogeny and systematics of Lemnaceae, the duckweed family. Systematic Botany 27.2 (2002): 221-240. doi: 10.1043/0363-6445-27.2.221
Ferdoushi, Zannatul, et al. The effects of two aquatic floating macrophytes (Lemna and Azolla) as biofilters of nitrogen and phosphate in fish ponds. Turkish Journal of Fisheries and Aquatic Sciences 8.2 (2008).
Masrahi, Yahya S., Turki A. Al Turki, and Osama H. Sayed. Wolffiella hyalina (Delile) Monod (Lemnaceae)–a new record for the flora of Saudi Arabia. Feddes Repertorium 121.5 to 6 (2010): 189-193. doi: 10.1002/fedr.201000018
Bog, Manuela, et al. Genetic characterization and barcoding of taxa in the genus Wolffia Horkel ex Schleid. (Lemnaceae) as revealed by two plastidic markers and amplified fragment length polymorphism (AFLP). Planta 237.1 (2013): 1-13. doi: 10.1007/s00425-012-1777-9
Sree, K. Sowjanya, Sailendharan Sudakaran, and Klaus-J. Appenroth. How fast can angiosperms grow? Species and clonal diversity of growth rates in the genus Wolffia (Lemnaceae). Acta Physiologiae Plantarum 37.10 (2015): 1-7. doi: 10.1007/s11738-015-1951-3
Silva, Glaura G., et al. Whole angiosperms Wolffia columbiana disperse by gut passage through wildfowl in South America. Biology letters 14.12 (2018): 20180703. doi: 10.1098/rsbl.2018.0703
Coughlan, Neil E., Thomas C. Kelly, and Marcel AK Jansen. “Step by step”: high frequency short-distance epizoochorous dispersal of aquatic macrophytes. Biological Invasions 19.2 (2017): 625-634. doi: 10.1007/s10530-016-1293-0
Darwin, D. (2015). Chapter 1 An introduction to Genetics. (5), 1–15. doi: 10.1007/978-3-642-33811-3_1
Ishizawa, Hidehiro, et al. Evaluation of environmental bacterial communities as a factor affecting the growth of duckweed Lemna minor. Biotechnology for biofuels 10.1 (2017): 1-10. doi: 10.1186/s13068-017-0746-8
Iguchi, Hiroyuki, et al. Community composition and methane oxidation activity of methanotrophs associated with duckweeds in a fresh water lake. Journal of bioscience and bioengineering 128.4 (2019): 450-455. doi: 10.1016/j.jbiosc.2019.04.009
Gupta, Charu, and Dhan Prakash. Duckweed: an effective tool for phyto-remediation. Toxicological & Environmental Chemistry 95.8 (2013): 1256-1266. doi: 10.1080/02772248.2013.879309
Li, Xiang, et al. Microalgal and duckweed based constructed wetlands for swine wastewater treatment: A review. Bioresource Technology (2020): 123858. doi: 10.1016/j.biortech.2020.123858
Teixeira, S., et al. Bioremediation of an iron-rich mine effluent by Lemna minor. International journal of phytoremediation 16.12 (2014): 1228-1240. doi: 10.1080/15226514.2013.821454
West Jr, Keith P. Vitamin A deficiency disorders in children and women. Food and nutrition bulletin 24.4_suppl2 (2003): S78-S90. doi: 10.1177/15648265030244S204
Compeer, A. E., and J. H. de Best. Report Blauwe Keten: Applications of proteins, amino acids and starch from duckweed. Avans University of Applied Sciences, Vlaanderen, Nederland (2018).
International Steering Committee Duckweed Research and Applications (ISCDRA). (2017). Duckweed forum. Newsletter of the Community of Duckweed Research and Applications, 5(16), 1–31. Retrieved from http://www.ruduckweed.org/uploads/1/0/8/9/10896289/iscdra-duckweedforum_issue16-2017-01.pdf
Ahmad, Iqbal, Farah Ahmad, and John Pichtel, eds. Microbes and microbial technology: agricultural and environmental applications. Springer Science & Business Media, 2011. doi: 10.1007/978-1-4419-7931-5
Berg, Gabriele, et al. Unraveling the plant microbiome: looking back and future perspectives. Frontiers in microbiology 5 (2014): 148. doi: 10.3389/fmicb.2014.00148
Stouvenakers, Gilles, et al. Plant pathogens and control strategies in aquaponics. Aquaponics food production systems (2019): 353-378. doi: 10.1007/978-3-030-15943-6
Zelicha, Hila, et al. The effect of Wolffia globosa Mankai, a green aquatic plant, on postprandial glycemic response: a randomized crossover controlled trial. Diabetes Care 42.7 (2019): 1162-1169.doi: 10.2337/dc18-2319
Allende, Ana, and James Monaghan. Irrigation water quality for leafy crops: a perspective of risks and potential solutions. International journal of environmental research and public health 12.7 (2015): 7457-7477. doi: 10.3390/ijerph120707457
Lodewyckx, Cindy, et al. Endophytic bacteria and their potential applications. Critical reviews in plant sciences 21.6 (2002): 583-606. doi: 10.1080/0735-260291044377
Grady, Elliot Nicholas, et al. Current knowledge and perspectives of Paenibacillus: a review. Microbial cell factories 15.1 (2016): 1-18. doi: 10.1186/s12934-016-0603-7
Kittiwongwattana, Chokchai, and Chitti Thawai. Paenibacillus lemnae sp. nov., an endophytic bacterium of duckweed (Lemna aequinoctialis). International journal of systematic and evolutionary microbiology 65. Pt1 (2015): 107-112. doi: 10.1099/ijs.0.067876-0
Yamakawa, Yusuke, Rahul Jog, and Masaaki Morikawa. Effects of co-inoculation of two different plant growth-promoting bacteria on duckweed. Plant growth regulation 86.2 (2018): 287-296. doi: 10.1007/s10725-018-0428-y
Groth, I. (2015). Janibacter. Bergey’s Manual of Systematics of Archaea and Bacteria, 1–10. doi: 10.1002/9781118960608.gbm00078
Singh, Radha, and Ashok K. Dubey. Diversity and applications of endophytic actinobacteria of plants in special and other ecological niches. Frontiers in microbiology 9 (2018): 1767. doi: 10.3389/fmicb.2018.01767
Makarova, Kira S., et al. Genome of the extremely radiation-resistant bacterium Deinococcus radiodurans viewed from the perspective of comparative genomics. Microbiology and molecular biology reviews 65.1 (2001): 44-79. doi: 10.1128/MMBR.65.1.44-79.2001
Gnanamanickam, Samuel S., and J. Ebenezar Immanuel. Epiphytic bacteria, their ecology and functions. Plant-associated bacteria (2007): 131-153. doi: 10.1007/978-1-4020-4538-7_4
Arnold, Dawn L., and Gail M. Preston. Pseudomonas syringae: Enterprising epiphyte and stealthy parasite. Microbiology 165.3 (2019): 251-253. doi: 10.1099/mic.0.000715
Abbasi, V., Rahimian, H., Tajick-Ghanbari, M. A., ARNY, D. ., LINDOW, S. E., UPPER, C. ., … Moore, L. W. (2013). Comprehensive list of names of plant pathogenic bacteria, 1980-2007. European Journal of Forest Pathology, 68(3), 425–438.
Snehalatharani, A., and A. N. A. Khan. Biochemical and physiological characterisation of Erwinia species causing tip-over disease of banana. Archives of Phytopathology and Plant Protection 43.11 (2010): 1072-1080. doi: 10.1080/03235400802285422
Kado, CLARENCE I. Erwinia and related genera. The prokaryotes 6 (2006): 443-450. doi: 10.1007/0-387-30746-x_15
Burgess, lester W., Knight, T. E., Tesoriero Len, & Phan hien Thuy. (2008). Diagnostic manual for plant diseases in Vietnam. Australian Centre for International Agricultural Research, 126–133.
Norman, D. J., et al. Characterization of Erwinia populations from nursery retention ponds and lakes infecting ornamental plants in Florida. Plant Disease 87.2 (2003): 193-196. doi: 10.1094/PDIS.2003.87.2.193
Haile, Befekadu, Girma Adugna, and Fikre Handoro. Physiological characteristics and pathogenicity of Xanthomonas campestris pv. musacearum strains collected from enset and banana in Southwest Ethiopia. African Journal of Biotechnology 13.24 (2014). doi: 10.5897/AJB2014.13794
Li, B., G. L. Xie, and J. Swings. First report of leaf spot caused by Xanthomonas campestris on poinsettia in China. Plant Pathology 55.2 (2006). doi: 10.1111/j.1365-3059.2005.01257.x
Singh, Vaibhav K., Yogendra Singh, and Prabhat Kumar. Diseases of ornamental plants and their management. Eco-friendly innovative approaches in plant disease management. International Book Distributors and Publisher, New Delhi (2012): 543-572. doi: 10.13140/RG.2.1.2250.1520
Mirik, Mustafa, Yesim Aysan, and Fulya BAYSAl-Gurel. Bacterial spot and blight diseases of ornamental plants caused by different Xanthomonas species in Turkey. (2018). doi: 10.17221/10/2017-PPS
Radulovic, Olga, et al. Culture-dependent analysis of 16S rRNA sequences associated with the rhizosphere of Lemna minor and assessment of bacterial phenol-resistance: Plant/bacteria system for potential bioremediation–Part II. Polish Journal of Environmental Studies 28.2 (2018): 811-822. doi: 10.15244/pjoes/81687
Moyo, S., et al. Realising the maximum health benefits from water quality improvements in the home: a case from Zaka district, Zimbabwe. Physics and Chemistry of the Earth, Parts A/B/C 29.15-18 (2004): 1295-1299. doi: 10.1016/j.pce.2004.09.012
Yahya, Hanis Nadia, et al. Changes in bacterial loads, gas composition, volatile organic compounds, and glucosinolates of fresh bagged Ready-To-Eat rocket under different shelf life treatment scenarios. Postharvest Biology and Technology 148 (2019): 107-119. doi: 10.1016/j.postharvbio.2018.10.021
Miller, Cortney M. Microbiological safety of organic fertilizers used for produce production. Diss. Clemson University, 2011. doi: 10.22616/foodbalt.2017.003
Bell, Luke, et al. Changes in rocket salad phytochemicals within the commercial supply chain: Glucosinolates, isothiocyanates, amino acids and bacterial load increase significantly after processing. Food chemistry 221 (2017): 521-534. doi: 10.1016/j.foodchem.2016.11.154
Makvana, Sejal, and Leonard R. Krilov. Escherichia coli infections. Pediatrics in review 36.4 (2015): 167-171. doi: 10.1542/pir.36.4.167
Odonkor, Stephen T., and Joseph K. Ampofo. Escherichia coli as an indicator of bacteriological quality of water: an overview. Microbiology research 4.1 (2013): 5-11. doi: 10.4081/mr. 2013.e2
Sato, Ayami, et al. Morphological and biological characteristics of Staphylococcus aureus biofilm formed in the presence of plasma. Microbial Drug Resistance 25.5 (2019): 668-676. doi: 10.1089/mdr.2019.0068
Conley, David B., et al. Superantigens and Chronic Rhinosinusitis II: Analysis of T-Cell Receptor VBeta Domains in Nasal Polyps. American journal of rhinology 20.4 (2006): 451-455. doi: 10.2500/ajr.2006.20.2880
Dortet, Laurent, et al. Recruitment of the major vault protein by InlK: a Listeria monocytogenes strategy to avoid autophagy. PLoS pathogens 7.8 (2011): e1002168. doi: 10.1371/journal.ppat.1002168
Zhu, Qi, Ravi Gooneratne, and Malik Altaf Hussain. Listeria monocytogenes in fresh produce: outbreaks, prevalence and contamination levels. Foods 6.3 (2017): 21. doi: 10.3390/foods6030021
Chaves, Rafael Djalma, et al. Salmonella and Listeria monocytogenes in ready-to-eat leafy vegetables. Food Hygiene and Toxicology in Ready-to-Eat Foods. Academic Press, 2016. 123-149. doi: 10.1016/B978-0-12-801916-0.00008-X
Rottier, E., & Ince, M. (2003). Disease and disease transmission. Controlling and Preventing Disease: The Role of Water and Environmental Sanitation Interventions, 7–27.
Regional, W., Authority, H., Prevention, I., & Manual, C. (2008). Infectious Agent Susceptible Host Reservoirs Portal of Entry Means of Transmission Portal of Exit. 1–6.
Potter, M. C. Bacterial Diseases of Plants1. The Journal of Agricultural Science 4.3 (1912): 323-337. doi: 10.1017/S0021859600001428
Hogenhout, Saskia A., et al. Phytoplasmas: bacteria that manipulate plants and insects. Molecular plant pathology 9.4 (2008): 403-423. doi: 10.1111/j.1364-3703.2008. 00472.x
Sheets, D., Pests, Q., Directive, E. U., Common, M., Annex, S. E. U., Taxonomic, B.,Annex, N. E. U. (2009). Spiroplasma citri. 2.
Bové, J. ., & Garnier, M. (2003). Phloem-and xylem-restricted plant pathogenic bacteria. Plant Science, 164(3), 423–438. doi: 10.1016/s0168-9452(03)00033-5
Frank, A., Saldierna Guzmán, J., & Shay, J. (2017). Transmission of Bacterial Endophytes. Microorganisms, 5(4), 70. doi: 10.3390/microorganisms5040070
Staff, I. (2019). Mankai duckweed plant: the next superfood? - ISRAEL21c.
de Beukelaar, Myrthe FA, et al. Duckweed as human food. The influence of meal context and information on duckweed acceptability of Dutch consumers. Food quality and preference 71 (2019): 76-86. doi: 10.1016/j.foodqual.2018.06.005
Fraser, A. M., & Simmons, O. D. (2017). Food Safety Education. Sustainability Challenges in the Agrofood Sector, 643–659. doi: 10.1002/9781119072737.ch27
Iwu, Chidozie Declan, and Anthony Ifeanyi Okoh. Preharvest transmission routes of fresh produce associated bacterial pathogens with outbreak potentials: a review. International journal of environmental research and public health 16.22 (2019): 4407. doi: 10.3390/ijerph16224407
Hiro Behnam, Soheil Seedfar, Farzaneh Sabbagh Mojaveryazdi (2013). Biological Contamination of the Water and Its Effects.
Edmonds, C., and R. Hawke. Microbiological and metal contamination of watercress in the Wellington region, New Zealand—2000 survey. Australian and New Zealand journal of public health 28.1 (2004): 20-26. doi: 10.1111/j.1467-842X.2004.tb00627.x
Prazak, Ann Marie, et al. Prevalence of Listeria monocytogenes during production and postharvest processing of cabbage. Journal of food protection 65.11 (2002): 1728-1734. doi: 10.4315/0362-028X-65.11.1728
Ziegler, P., K. S. Sree, and K-J. Appenroth. Duckweeds for water remediation and toxicity testing. Toxicological & Environmental Chemistry 98.10 (2016): 1127-1154. doi: 10.1080/02772248.2015.1094701
Burton, Maxine, et al. The effect of handwashing with water or soap on bacterial contamination of hands. International journal of environmental research and public health 8.1 (2011): 97-104. doi: 10.3390/ijerph8010097
Machado Moreira, Bernardino, et al. Microbial contamination of fresh produce: what, where, and how? Comprehensive reviews in food science and food safety 18.6 (2019): 1727-1750. doi: 10.1111/1541-4337.12487
Erickson, Marilyn C., et al. Contamination of knives and graters by bacterial foodborne pathogens during slicing and grating of produce. Food microbiology 52 (2015): 138-145. doi:10.1016/j.fm.2015.07.008Get rights and content
Kostic, Boban, et al. Animal Manure and Environment. Fresenius Environmental Bulletin 29 (2020): 1289.
Alam, Md Sajjad, et al. Microbiological contamination sources of freshly cultivated vegetables. Nutrition & Food Science (2015). doi: 10.1108/NFS-04-2015-0032
Afsah Hejri, L., et al. A review on mycotoxins in food and feed: Malaysia case study. Comprehensive Reviews in Food Science and Food Safety 12.6 (2013): 629-651. doi: 10.1111/1541-4337.12029
M.D. Sobsey, L.A. Khatib, V.R. Hill, E. Alocilja, S. Pillai (2011). Pathogen in Animal Waste and The Impacts of Waste Management Practices on Their Survival, Transport and Fate (913), 1–5.
Jiang, X., Z. Chen, and M. Dharmasena. The role of animal manure in the contamination of fresh food. Advances in microbial food safety. Woodhead Publishing, 2015. 312-350. doi: 10.1533/9781782421153.3.312
Bintsis, Thomas. Microbial pollution and food safety. AIMS microbiology 4.3 (2018): 377. doi: 10.3934/microbiol.2018.3.377
Lampheuy, Kaensombath, San Thy, and T. R. Preston. Manure or biodigester effluent as fertilizer for duckweed. Livestock Research for Rural Development 16.3 (2004): 25-34.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Hanis Yahya
This work is licensed under a Creative Commons Attribution 4.0 International License.
The copyright of this article will be vested to author(s) and granted the journal right of first publication with the work simultaneously licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0) license, unless otherwise stated.