Production of Vanillin from Pineapple Peels Using Alkaline Hydrolysis and Microbial Fermentation

Authors

  • Zainurin Zubaidah Faculty of Science and Technology, Universiti Sains Islam Malaysia (USIM), 71800, Negeri Sembilan, Malaysia.
  • Latiffah Karim Faculty of Science and Technology, Universiti Sains Islam Malaysia (USIM), 71800, Negeri Sembilan, Malaysia.

DOI:

https://doi.org/10.33102/mjosht.v10i1.361

Keywords:

Vanillin, Aspergillus niger, pineapple peel, ferulic acid, biotechnological route

Abstract

Vanillin is one of the most commonly utilized aromatic flavoring chemicals in the food and cosmetics industries. It is derived from natural sources, making it more expensive than synthetic vanillin, and it constitutes less than one percent of the annual market demand. Pineapple peel stands out as a valuable source for extracting ferulic acid, which in turn is utilized in the synthesis of vanillin. As a result, researchers are exploring alternative methods for producing vanillin, such as biotechnological production from ferulic acid. In this study, the capability of pineapple peels as a substrate for the microbial fermentation of ferulic acid by Aspergillus niger to produce vanillin in a single step was investigated. The biotransformation of ferulic acid from pineapple peel by alkaline hydrolysis was optimized using different concentrations of NaOH. Further, the detection and quantification of vanillin and ferulic acid were carried out using High-Performance Liquid Chromatography and thiobarbituric acid (TBA) method. Through HPLC analysis, the amount of vanillin concentration produced from the supernatant culture was 1.47±0.24 µg/ml from 1.0 M NaOH concentration and 2.83±0.44 µg/ml from 2.0 M NaOH concentration. From this study, 57.09±1.84 µg/ml and 83.84±4.01 µg/ml of ferulic acid were produced from the 1.0 M NaOH and 2.0M NaOH, respectively. In addition, using the TBA technique, vanillin concentrations were calculated, resulting in 12.92 ± 0.54 µg/ml and 15.38 ± 0.77 µg/ml from 1.0 M and 2.0 M NaOH concentrations, respectively. Briefly, the pineapple peel has been discovered as a good source for vanillin production using Aspergillus niger in the fermentation method.

Downloads

Download data is not yet available.

References

Hajar, N., Zainal, S., Nadzirah, K. Z., Roha, A. M. S., Atikah, O., & Elida, T. Z. M. T., “Physicochemical Properties Analysis of Three Indexes Pineapple (Ananas Comosus) Peel Extract Variety N36,” APCBEE Procedia, 4, 115–121, 2012, doi: 10.1016/j.apcbee.2012.11.020.

M.C., Tan & Liew, S.L. & Maskat, Mohamad & Wan mustapha, Wan & Osman, Hyder., “Optimization of vanillin production using isoeugenol as substrate by Aspergillus niger I-1472,” International Food Research Journal, 2015, 22, 1651-1656.

Banerjee, G., & Chattopadhyay, P., “Vanillin biotechnology: the perspectives and future,” In Journal of the Science of Food and Agriculture, 2019, Vol. 99, Issue 2, pp. 499–506, doi: 10.1002/jsfa.9303.

Yan, L., Chen, P., Zhang, S., Li, S., Yan, X., Wang, N., Liang, N., & Li, H., “Biotransformation of ferulic acid to vanillin in the packed bed-stirred fermenters,” Scientific Reports, 6, 2016, doi: 10.1038/srep34644.

Aili Hamzah et al, “Recent Updates on the Conversion of Pineapple Waste (Ananas comosus) to Value-Added Products, Future Perspectives and Challenges,” Agronomy, 11(11), 2221, 2021, doi: 10.3390/agronomy11112221.

Walton, N. J., Mayer, M. J., & Narbad, A., “Vanillin,” Phytochemistry, 63(5), 505–515, 2003, doi: 10.1016/s0031-9422(03)00149-3.

Rana, R., Mathur, A., Jain, C. K., Sharma, S. K., & Mathur, G. (2013). “Microbial Production of Vanillin,” In International Journal of Biotechnology and Bioengineering Research, vol. 4, issue 3, 2013, Retrieved online http://www.ripublication.com/ijbbr.htm.

Zheng, L., Zheng, P., Sun, Z., Bai, Y., Wang, J., & Guo, X., “Production of vanillin from waste residue of rice bran oil by Aspergillus niger and Pycnoporus cinnabarinus,” Bioresource Technology, 98(5), 1115–1119, 2007, doi: 10.1016/j.biortech.2006.03.028.

Ong, Khai Lun & W., Tan & L., Liew, “Pineapple cannery waste as a potential substrate for microbial biotransformation to produce vanillic acid and vanillin,” International Food Research Journal, 2014, 21, 953-958.

Yusof, Y., Yahya, S. A., & Adam, A., “Novel technology for sustainable pineapple leaf fibers productions,” Procedia CIRP, 26, 756–760, 2015, doi: 10.1016/j.procir.2014.07.160.

Roda, A., & Lambri, M., “Food uses of pineapple waste and by-products: a review,” In International Journal of Food Science and Technology, vol. 54, issue 4, pp. 1009–1017, 2019, Blackwell Publishing Ltd, doi: 10.1111/ijfs.14128.

Hamzah, A. F. A., Hamzah, M. H., Man, H. C., Jamali, N. S., Siajam, S. I., & Ismail, M. H., “Recent updates on the conversion of pineapple waste (Ananas comosus) to value-added products, future perspectives and challenges,” In Agronomy, (Vol. 11, Issue 11), MDPI, 2021, doi: 10.3390/agronomy11112221.

Yahayu, M., Mahmud, K. N., Mahamad, M. N., Ngadiran, S., Lipeh, S., Ujang, S., & Zakaria, Z. A., “Efficacy of Pyroligneous Acid from Pineapple Waste Biomass as Wood Preserving Agent,” Jurnal Teknologi, 79(4), 2017, doi: 10.11113/jt. v79.9987.

Rico, X., Gullón, B., Alonso, J. L., & Yáñez, R., “Recovery of high value-added compounds from pineapple, melon, watermelon and pumpkin processing by-products: An overview,” In Food Research International, vol. 132, 2020, Elsevier Ltd, doi: 10.1016/j.foodres.2020.109086.

Lemaire, A., & Limbourg, S. (2019). “How can food loss and waste management achieve sustainable development goals,” In Journal of Cleaner Production, vol. 234, pp. 1221–1234, 2019, Elsevier Ltd, doi: 10.1016/j.jclepro.2019.06.226.

Morone, P., Koutinas, A., Gathergood, N., Arshadi, M., & Matharu, A., “Food waste: Challenges and opportunities for enhancing the emerging bioeconomy,” In Journal of Cleaner Production, vol. 221, pp. 10–16, 2019, Elsevier Ltd. doi: 10.1016/j.jclepro.2019.02.258.

De Ancos, B., Sánchez-Moreno, C., & González-Aguilar, G. A., “Pineapple composition and nutrition,” Handbook of Pineapple Technology, 221–239, 2016, doi: 10.1002/9781118967355.ch12.

Dai, Hongjie & Huang, Huihua, “Modified pineapple peel cellulose hydrogels embedded with sepia ink for effective removal of methylene blue,” Carbohydrate Polymers, 148, 2016, doi: 10.1016/j.carbpol.2016.04.040.

Asim, M., Abdan, K., Jawaid, M., Nasir, M., Dashtizadeh, Z., Ishak, M. R., & Hoque, M. E., “A Review on Pineapple Leaves Fibre and Its Composites,” International Journal of Polymer Science, 2015, 1–16. doi: 10.1155/2015/950567.

Chattopadhyay, P., Banerjee, G., & Sen, S. K., “Cleaner production of vanillin through biotransformation of ferulic acid esters from agro residue by Streptomyces sannanensis,” Journal of Cleaner Production, 182, 272–279, 2018, doi: 10.1016/j.jclepro.2018.02.043.

Kaur, B., & Chakraborty, D., “Biotechnological and molecular approaches for vanillin production: A review,” In Applied Biochemistry and Biotechnology, vol. 169, Issue 4, pp. 1353–1372), 2013, doi: 10.1007/s12010-012-0066-1.

Gu, Fenglin, Chen, Yonggan, F., Yinghua, F., Yiming; T., Lehe, “Comparative metabolomics in vanilla pod and vanilla bean revealing the biosynthesis of vanillin during the curing process of vanilla,” AMB Express, 7(1), 116–, 2017, doi:10.1186/s13568-017-0413-2.

Ashengroph, M., Nahvi, I., Zarkesh-Esfahani, H., & Momenbeik, F. (2012). “Conversion of isoeugenol to vanillin by Psychrobacter sp. Strain CSW4,” Applied Biochemistry and Biotechnology, 166(1), 1–12, 2011, doi: 10.1007/s12010-011-9397-6.

Wucherpfennig, T., Lakowitz, A., Driouch, H., Krull, R., & Wittmann, C., “Customization of Aspergillus niger Morphology Through Addition of Talc Micro Particles,” Journal of Visualized Experiments, 61, 2012, doi: 10.3791/4023.

Zhou, Y., Han, L.-R., He, H.-W., Sang, B., Yu, D.-L., Feng, J.-T., & Zhang, X., “Effects of Agitation, Aeration and Temperature on Production of a Novel Glycoprotein GP-1 by Streptomyces kanasenisi ZX01 and Scale-Up Based on Volumetric Oxygen Transfer Coefficient,” Molecules, 23(1), 125, 2018, doi:10.3390/molecules23010125.

Hu, H. L., Van den Brink, J., Gruben, B. S., Wösten, H. A. B., Gu, J.-D.., & de Vries, R. P., “Improved enzyme production by co-cultivation of Aspergillus niger and Aspergillus oryzae and with other fungi,” International Biodeterioration & Biodegradation, 65(1), 248–252, 2011, doi: 10.1016/j.ibiod.2010.11.008.

Mrudula, S., & Murugammal, R., “Production of cellulose by Aspergillus niger under submerged and solid-state fermentation using coir waste as a substrate,” Brazilian Journal of Microbiology, 42(3), 1119–1127, 2011, doi: 10.1590/S1517-838220110003000033.

Srivastava, S., Luqman, S., Khan, F., Chanotiya, C. S., & Darokar, M. P., “Metabolic pathway reconstruction of eugenol to vanillin bioconversion in Aspergillus niger,” Bioinformation, 4(7), 320–325, 2010, doi: 10.6026/97320630004320.

Zulkarnain, A., Bahrin, E. K., Ramli, N., Phang, L. Y., & Abd-Aziz, S., “Alkaline Hydrolysate of Oil Palm Empty Fruit Bunch as Potential Substrate for Biovanillin Production via Two-Step Bioconversion,” Waste and Biomass Valorization, 9(1), 13–23, 2018, doi: 10.1007/s12649-016-9745-4.

Micard, V., Renard, C. M. G. C., & Thibault, J.-F., “Enzymatic saccharification of sugar-beet pulp,” Enzyme and Microbial Technology, 19(3), 162–170, 1996, doi: 10.1016/0141-0229(95)00224-3.

Tilay, A., Bule, M., & Annapure, U., “Production of biovanillin by one-step biotransformation using fungus Pycnoporous cinnabarinus,” Journal of Agricultural and Food Chemistry, 58(7), 4401–4405, 2010, doi: 10.1021/jf904141u.

Converti, A., Aliakbarian, B., Domínguez, J. M., Vázquez, G. B., & Perego, P., “Microbial production of biovanillin,” Brazilian Journal of Microbiology, 41(3), 519–530, 2020, doi: 10.1590/s1517-83822010000300001.

Saeed, S., Ur Rehman Baig, U., Tayyab, M., Altaf, I., Irfan, M., Raza, S. Q., Nadeem, F., & Mehmood, T., “Valorization of banana peels waste into biovanillin and optimization of process parameters using submerged fermentation,” Biocatalysis and Agricultural Biotechnology, 36, 2021, doi: 10.1016/j.bcab.2021.102154.

Tang, P. L., & Hassan, O., “Bioconversion of ferulic acid attained from pineapple peels and pineapple crown leaves into vanillic acid and vanillin by Aspergillus niger I-1472,” BMC Chemistry, 14(1), 2020, doi: 10.1186/s13065-020-0663-y.

Dos, E., Barbosa, S., Perrone, D., Lúcia, A., Vendramini, A., Gomes, S., & Leite, F., “Vanillin production by Phanerochaete chrysosporium grown on green coconut agro-industrial husk in solid state fermentation,” BioResources, 2008, doi: 3. 10.15376/biores.3.4.1042-1050.

Brodeur, G., Yau, E., Badal, K., Collier, J., Ramachandran, K. B., & Ramakrishnan, S., “Chemical and Physicochemical Pre-treatment of Lignocellulosic Biomass: A Review,” Enzyme Research, 2011, 1–17. doi: 10.4061/2011/787532.

Attilio Converti, “Solubilization of Lignin Components of Food Concern from Sugarcane Bagasse by Alkaline Hydrolysis,” Ciencia Y Tecnologia Alimentaria, 2007, 5(4), 271–277.

Buranov, A. U., & Mazza, G., “Extraction and purification of ferulic acid from flax shives, wheat and corn bran by alkaline hydrolysis and pressurised solvents.” Food Chemistry, 115(4), 1542–1548, 2009, doi: 10.1016/j.foodchem.2009.01.059.

Yépez, R., Illescas, J. F., Gijón, P., Sánchez-Sánchez, M., González-Zamora, E., Santillan, R., Álvarez, J. R., Ibarra, I. A., & Aguilar-Pliego, J., “HKUST-1 as a Heterogeneous Catalyst for the Synthesis of Vanillin,” Journal of Visualized Experiments, 113, 2016, doi:10.3791/54054.

Galadima, et al., “One-Step Conversion of Lemongrass Leaves Hydrolysate to Biovanillin by Phanerochaete chrysosporium ATCC 24725 in Batch Culture,” Waste and Biomass Valorization, 11(8), 4067–4080, 2020, doi: 10.1007/s12649-019-00730-w.

Domínguez-Arispuro, D. M., Cuevas-Rodríguez, E. O., Milán-Carrillo, J., León-López, L., Gutiérrez-Dorado, R., & Reyes-Moreno, C., “Optimal germination condition impacts on the antioxidant activity and phenolic acids profile in pigmented desi chickpea (Cicer arietinum L.) seeds,” Journal of Food Science and Technology, 55(2), 638–647, 2017, doi: 10.1007/s13197-017-2973-1.

Pilanee, V., & Waraporn, A., “Feasibility Study on Vanillin Production from Jatropha curcas Stem Using Steam Explosion as a Pretreatment,” International Journal of Agricultural and Biosystems Engineering, 3(5), 258–261, 2009, doi: 10.5281/zenodo.1086035.

Aarabi et al, “Extraction of ferulic acid from sugar beet pulp by alkaline hydrolysis and organic solvent methods,” Journal of Food Measurement and Characterization, 10(1), 42–47, 2016, doi:10.1007/s11694-015-9274-z.

Benoit, I., Navarro, D., Marnet, N., Rakotomanomana, N., Lesage-Meessen, L., Sigoillot, J.-C., Asther, M., & Asther, M., “Feruloyl esterases as a tool for the release of phenolic compounds from agro-industrial by-products,” Carbohydrate Research, 341(11), 1820–1827, 2006, doi: 10.1016/j.carres.2006.04.020.

Gallage, Nethaji J., & Møller, B., “Vanillin–Bioconversion and Bioengineering of the Most Popular Plant Flavor and Its De Novo Biosynthesis in the Vanilla Orchid,” Molecular Plant, 8(1), 40–57, 2015, doi: 10.1016/j.molp.2014.11.008.

Taira, J., Toyoshima, R., Ameku, N., & Tamaki, Y., “Vanillin production by biotransformation of phenolic compounds in fungus, Aspergillus luchuensis,” AMB Express. 8, 2018, doi: 10.1186/s13568-018-0569-4.

Mathew, S., Abraham, T., & S Sudheesh, “Rapid conversion of ferulic acid to 4-vinyl guaiacol and vanillin metabolites by Debaryomyces hansenii.” Journal of Molecular Catalysis B Enzymatic, 2007, doi: 10.1016/j.molcatb.2006.09.001.

Zamzuri, N. A., & Abd-Aziz, S., “Biovanillin from agro wastes as an alternative food flavour,” Journal of the Science of Food and Agriculture, 93(3), 429–438, 2012, doi: 10.1002/jsfa.5962.

Schwab, Wilfried, S., Lange, Markus, B., Wüst, Matthias, “Vanilla: The Most Popular Flavour,” Biotechnology of Natural Products, 3–24, 2018, doi:10.1007/978-3-319-67903-7_1.

Nazila, M., Maznah, B. T. I., & Forough, N., “Bioconversion of ferulic acid to vanillin by combined action of Aspergillus niger K8 and Phanerochaete crysosporium ATCC 24725,” African Journal of Biotechnology, 12(47), 6618–6624, 2013, doi: 10.5897/ajb2013.12416.

Lesage-Meessen, L., Lomascolo, A., Bonnin, E., Thibault, J.-F., Buleon, A., Roller, M., Asther, M., Record, E., Ceccaldi, B. C., & Asther, M., “A Biotechnological Process Involving Filamentous Fungi to Produce Natural Crystalline Vanillin from Maize Bran,” Applied Biochemistry and Biotechnology, 102-103(1-6), 141–154, 2002, doi: 10.1385/abab:102-103:1-6:141.

Ravindran, R., & Jaiswal, A., “Microbial Enzyme Production Using Lignocellulosic Food Industry Wastes as Feedstock: A Review,” Bioengineering, 3(4), 30, 2016, doi: 10.3390/bioengineering3040030.

Tsegaye, Bahiru, B., Chandrajit, R., Partha, “Microbial delignification and hydrolysis of lignocellulosic biomass to enhance biofuel production: an overview and future prospect,” Bulletin of the National Research Centre, 43(1), 51–, 2019, doi:10.1186/s42269-019-0094-x.

Lubbers, R. J. M., Dilokpimol, A., Nousiainen, P. A., Cioc, R. C., Visser, J., Bruijnincx, P. C. A., & de Vries, R. P., “Vanillic acid and methoxyhydroquinone production from guaiacyl units and related aromatic compounds using Aspergillus niger cell factories,” Microbial Cell Factories, 20(1), 2021, doi: 10.1186/s12934-021-01643-x.

Downloads

Published

2024-04-05

How to Cite

Zainurin Zubaidah, & Latiffah Karim. (2024). Production of Vanillin from Pineapple Peels Using Alkaline Hydrolysis and Microbial Fermentation. Malaysian Journal of Science Health & Technology, 10(1), 58–68. https://doi.org/10.33102/mjosht.v10i1.361

Issue

Section

Food Science & Nutrition

Similar Articles

<< < 1 2 3 

You may also start an advanced similarity search for this article.