Optimization of the Biodiesel Production via Transesterification Reaction of Palm Oil using Response Surface Methodology (RSM): A Review

Total Views: 93 | Total Downloads: 104


  • Nur Aishah Rajali Faculty of Science and Technology, Universiti Sains Islam Malaysia, 71800 Nilai, Negeri Sembilan, Malaysia.
  • Salina Mat Radzi Faculty of Science and Technology, Universiti Sains Islam Malaysia, 71800 Nilai, Negeri Sembilan, Malaysia.
  • Maryam Mohamed Rehan Faculty of Science and Technology, Universiti Sains Islam Malaysia, 71800 Nilai, Negeri Sembilan, Malaysia.
  • Nur Amalina Mohd Amin Faculty of Science and Technology, Universiti Sains Islam Malaysia, 71800 Nilai, Negeri Sembilan, Malaysia.




response surface methodology, transesterification, biodiesel production, homogeneous catalysts, heterogeneous catalysts, and enzyme catalysts.


The optimization method is vital in chemical synthesis and has been applied in many fields nowadays. Response surface methodology (RSM) is an example of an optimization method that is useful in examining the effects of multiple independent variables. RSM was applied in many studies to optimize the transesterification of biodiesel production from palm oil in the presence of a catalyst. This paper aims to provide an overview of recent catalyzed transesterification trends, as well as the benefits and drawbacks of heterogeneous, homogeneous, and enzyme catalysts in biodiesel production. RSM was used to design the process and statistically analyze the interaction effects of the independent reaction variables. The reaction variables, such as reaction time, reaction temperature, catalyst amount, and the molar ratio of the substrate, were optimized during the process. A statistical model and response surface plots were visualized graphically in the contour plots and three-dimensional figures to explain the interactive effects of variables on a response. In sum, this paper discussed the relationships between the reaction parameters and the production of biodiesel and the optimum conditions for biodiesel production using RSM.


Download data is not yet available.


Kuss, V. V., Kuss, A. V., da Rosa, R. G., Aranda, D. A., & Cruz, Y. R. (2015). Potential of biodiesel production from palm oil at Brazilian Amazon. Renewable and Sustainable Energy Reviews, 50, 1013-1020. doi.org/10.1016/j.rser.2015.05.055

Yasin, M. H. M., Mamat, R., Najafi, G., Ali, O. M., Yusop, A. F., & Ali, M. H. (2017). Potentials of palm oil as new feedstock oil for a global alternative fuel: A review. Renewable and Sustainable Energy Reviews, 79, 1034-1049. doi.org/10.1016/j.rser.2017.05.186

Parsons, S., Raikova, S., & Chuck, C. J. (2020). The viability and desirability of replacing palm oil. Nature Sustainability, 3(6), 412-418. doi.org/10.1038/s41893-020-0487-8

Mahmud, M. I., & Cho, H. M. (2018). A review on characteristics, advantages and limitations of palm oil biofuel. International Journal of Global Warming, 14(1), 81-96. doi.org/10.1504/IJGW.2018.088646

Phukan, P. (2016). Vegetable oils as a source of wax ester: extraction and transesterification. Research Journal of Chemical Sciences

Talha, N. S., & Sulaiman, S. (2016). Overview of catalysts in biodiesel production. ARPN Journal of Engineering and Applied Sciences, 11(1), 439-442.

Myers, R. H., Montgomery, D. C., & Anderson-Cook, C. M. (2016). Response surface methodology: process and product optimization using designed experiments. John Wiley & Sons.

Wong, Y. C., Tan, Y. P., Taufiq-Yap, Y. H., Ramli, I., & Tee, H. S. (2015). Biodiesel production via transesterification of palm oil by using CaO–CeO2 mixed oxide catalysts. Fuel, 162, 288-293. doi.org/10.1016/j.fuel.2015.09.012

Basili, M., & Rossi, M. A. (2018). Brassica carinata-derived biodiesel production: economics, sustainability and policies. The Italian case. Journal of cleaner production, 191, 40-47. doi.org/10.1016/j.jclepro.2018.03.306

Ambat, I., Srivastava, V., & Sillanpää, M. (2018). Recent advancement in biodiesel production methodologies using various feedstock: A review. Renewable and sustainable energy reviews, 90, 356-369. doi.org/10.1016/j.rser.2018.03.069

Thangaraj, B., Solomon, P. R., Muniyandi, B., Ranganathan, S., & Lin, L. (2019). Catalysis in biodiesel production—a review. Clean Energy, 3(1), 2-23. doi.org/10.1093/ce/zky020

Qu, T., Niu, S., Zhang, X., Han, K., & Lu, C. (2021). Preparation of calcium modified Zn-Ce/Al2O3 heterogeneous catalyst for biodiesel production through transesterification of palm oil with methanol optimized by response surface methodology. Fuel, 284, 118986. doi.org/10.1016/j.fuel.2020.118986

Shahedi, M., Yousefi, M., Habibi, Z., Mohammadi, M., & As' habi, M. A. (2019). Co-immobilization of Rhizomucor miehei lipase and Candida antarctica lipase B and optimization of biocatalytic biodiesel production from palm oil using response surface methodology. Renewable Energy, 141, 847-857. doi.org/10.1016/j.renene.2019.04.042

Rizwanul Fattah, I. M., Ong, H. C., Mahlia, T. M. I., Mofijur, M., Silitonga, A. S., Rahman, S. A., & Ahmad, A. (2020). State of the art of catalysts for biodiesel production. Frontiers in Energy Research, 8, 101. doi.org/10.3389/fenrg.2020.00101

Zhang, P., Chen, X., Leng, Y., Dong, Y., Jiang, P., & Fan, M. (2020). Biodiesel production from palm oil and methanol via zeolite derived catalyst as a phase boundary catalyst: An optimization study by using response surface methodology. Fuel, 272, 117680. doi.org/10.1016/j.fuel.2020.117680

Abelniece, Z., Laipniece, L., & Kampars, V. (2020). Biodiesel production by interesterification of rapeseed oil with methyl formate in presence of potassium alkoxides. Biomass Conversion and Biorefinery, 1-9. doi.org/10.1007/s13399-020-00874-z

de Lima, A. L., Ronconi, C. M., & Mota, C. J. (2016). Heterogeneous basic catalysts for biodiesel production. Catalysis Science & Technology, 6(9), 2877-2891. doi.org/10.1039/C5CY01989C

Mandari, V., & Devarai, S. K. (2021). Biodiesel production using homogeneous, heterogeneous, and enzyme catalysts via transesterification and esterification reactions: A critical review. BioEnergy Research, 1-27. doi.org/10.1007/s12155-021-10333-w

Selvakumar, P., & Sivashanmugam, P. (2017). Optimization of lipase production from organic solid waste by anaerobic digestion and its application in biodiesel production. Fuel Processing Technology, 165, 1-8. doi.org/10.1016/j.fuproc.2017.04.020

da Silva, F. C., Guardiola, J. F. H., Teixeira, L. P., Maria, A. C. L., de Souza, L. A., & Belém, A. L. (2021). Optimization of palm oil biodiesel production using response surface methodology. Brazilian Journal of Environmental Sciences (Online), 56(2), 274-285. doi.org/10.5327/Z21769478825

Aworanti, O. A., Ajani, A. O., & Agarry, S. E. (2019). Process parameter estimation of biodiesel production from waste frying oil (vegetable and palm oil) using homogeneous catalyst. J Food Process Technol, 10, 1-10. doi.org/10.35248/2157-7110.19.10.811.

Silitonga, A.S., Shamsuddin, A.H., Mahlia, T.M.I., Milano, J., Kusumo, F., Siswantoro, J., Dharma, S., Sebayang, A.H., Masjuki, H.H. and Ong, H.C., 2020. Biodiesel synthesis from Ceiba pentandra oil by microwave irradiation-assisted transesterification: ELM modeling and optimization. Renewable Energy, 146, pp.1278-1291. doi.org/10.1016/j.renene.2019.07.065

Hartulistiyoso, E., Farobie, O., & Rholanjiba, S. (2022, June). Comparative Study on the Effect of Catalyst to The Yield of Biodiesel from Kemiri Sunan (Reutealis trisperma) Oil. In IOP Conference Series: Earth and Environmental Science (Vol. 1034, No. 1, p. 012024). IOP Publishing. doi.org/10.1088/1755-1315/1034/1/012024

Kim, B., Im, H., & Lee, J. W. (2015). In situ transesterification of highly wet microalgae using hydrochloric acid. Bioresource technology, 185, 421-425. doi.org/10.1016/j.biortech.2015.02.092

Abelniece, Z., Laipniece, L., & Kampars, V. (2020). Biodiesel production by interesterification of rapeseed oil with methyl formate in presence of potassium alkoxides. Biomass Conversion and Biorefinery, 1-9. doi.org/10.1007/s13399-020-00874-z

Akhabue, C. E., & Ogogo, J. A. (2018). Modelling and optimization of transesterification of palm kernel oil catalysed by calcium oxide derived from hen eggshell wastes. Ife Journal of Science, 20(1), 127-138. doi.org/10.4314/ijs.v20i1.13

Liu, F., Huang, K., Zheng, A., Xiao, F. S., & Dai, S. (2018). Hydrophobic solid acids and their catalytic applications in green and sustainable chemistry. ACS Catalysis, 8(1), 372-391. doi.org/10.1021/acscatal.7b03369

Hanif, M. A., Nisar, S., & Rashid, U. (2017). Supported solid and heteropoly acid catalysts for production of biodiesel. Catalysis Reviews, 59(2), 165-188. doi.org/10.1080/01614940.2017.1321452

Mohamed, R. M., Kadry, G. A., Abdel-Samad, H. A., & Awad, M. E. (2020). High operative heterogeneous catalyst in biodiesel production from waste cooking oil. Egyptian Journal of Petroleum, 29(1), 59-65. doi.org/10.1016/j.ejpe.2019.11.002

Feng, Y., Qiu, T., Yang, J., Li, L., Wang, X., & Wang, H. (2017). Transesterification of palm oil to biodiesel using Brønsted acidic ionic liquid as high-efficient and eco-friendly catalyst. Chinese Journal of Chemical Engineering, 25(9), 1222-1229. doi.org/10.1016/j.cjche.2017.06.027

Mansir, N., Taufiq-Yap, Y. H., Rashid, U., & Lokman, I. M. (2017). Investigation of heterogeneous solid acid catalyst performance on low grade feedstocks for biodiesel production: A review. Energy Conversion and Management, 141, 171-182. doi.org/10.1016/j.enconman.2016.07.037

Amini, Z., Ilham, Z., Ong, H. C., Mazaheri, H., & Chen, W. H. (2017). State of the art and prospective of lipase-catalyzed transesterification reaction for biodiesel production. Energy Conversion and Management, 141, 339-353. doi.org/10.1016/j.enconman.2016.09.049

Mardhiah, H. H., Ong, H. C., Masjuki, H. H., Lim, S., & Lee, H. V. (2017). A review on latest developments and future prospects of heterogeneous catalyst in biodiesel production from non-edible oils. Renewable and sustainable energy reviews, 67, 1225-1236. doi.org/10.1016/j.rser.2016.09.036

Bezerra, M. A., Ferreira, S. L. C., Novaes, C. G., Dos Santos, A. M. P., Valasques, G. S., da Mata Cerqueira, U. M. F., & dos Santos Alves, J. P. (2019). Simultaneous optimization of multiple responses and its application in Analytical Chemistry–A review. Talanta, 194, 941-959. doi.org/10.1016/j.talanta.2018.10.088

Zemmari, A., & Benois-Pineau, J. (2020). Deep Learning in Mining of Visual Content (No. 1). Springer Briefs in Computer Science: Springer.

Candioti, L. V., De Zan, M. M., Cámara, M. S., & Goicoechea, H. C. (2014). Experimental design and multiple response optimization. Using the desirability function in analytical methods development. Talanta, 124, 123-138. doi.org/10.1016/j.talanta.2014.01.034

Rabiu, Y. (2019). Tree Biomass and Carbon Sequestration Potential of Federal Forest Reserve, Ilorin East LGA, Kwara State (Doctoral dissertation, Kwara State University (Nigeria)).

Callao, M. P. (2014). Multivariate experimental design in environmental analysis. TrAC Trends in Analytical Chemistry, 62, 86-92. doi.org/10.1016/j.trac.2014.07.009

Mohamad, M., Ngadi, N., Wong, S. L., Jusoh, M., & Yahya, N. Y. (2017). Prediction of biodiesel yield during transesterification process using response surface methodology. Fuel, 190, 104-112. doi.org/10.1016/j.fuel.2016.10.123

Aydar, A. Y. (2018). Utilization of response surface methodology in optimization of extraction of plant materials. Statistical approaches with emphasis on design of experiments applied to chemical processes, 157-169.

Zabaruddin, N. H., Abdullah, L. C., Mohamed, N. H., & Choong, T. S. Y. (2020). Optimization using response surface methodology (RSM) for biodiesel synthesis catalyzed by radiation-induced Kenaf catalyst in packed-bed reactor. Processes, 8(10), 1289. doi.org/10.3390/pr8101289

Hamze, H., Akia, M., & Yazdani, F. (2015). Optimization of biodiesel production from the waste cooking oil using response surface methodology. Process Safety and Environmental Protection, 94, 1-10. doi.org/10.1016/j.psep.2014.12.005

Saengprachum, N., Cai, D., Li, M., Li, L., Lin, X., & Qiu, T. (2019). Acidic chitosan membrane as an efficient catalyst for biodiesel production from oleic acid. Renewable Energy, 143, 1488-1499. doi.org/10.1016/j.renene.2019.05.101

Anwar, M., Rasul, M. G., & Ashwath, N. (2018). Production optimization and quality assessment of papaya (Carica papaya) biodiesel with response surface methodology. Energy Conversion and Management, 156, 103-112. doi.org/10.1016/j.enconman.2017.11.004

Cai, D., Xie, Y., Li, L., Ren, J., Lin, X., & Qiu, T. (2018). Design and synthesis of novel Brønsted-Lewis acidic ionic liquid and its application in biodiesel production from soapberry oil. Energy Conversion and Management, 166, 318-327. doi.org/10.1016/j.enconman.2018.04.036


DOI: 10.33102/mjosht.v8i2.292
Published: 2022-09-30

How to Cite

Nur Aishah Rajali, Salina Mat Radzi, Maryam Mohamed Rehan, & Nur Amalina Mohd Amin. (2022). Optimization of the Biodiesel Production via Transesterification Reaction of Palm Oil using Response Surface Methodology (RSM): A Review. Malaysian Journal of Science Health & Technology, 8(2), 58–67. https://doi.org/10.33102/mjosht.v8i2.292