Synthesis and Characterization of Magnetic Nanoparticles (MNP) and MNP-Chitosan Composites
DOI:
https://doi.org/10.33102/mjosht.v4iSpecial%20Issue.83Abstract
Coating of iron oxide nanoparticles (MNP) is the common approach to reduce the effects of direct toxicity due to the ion oxidation that lead to the damage of DNA. This study investigates the effect of different concentration of Chitosan (Cs) used to coat the magnetic nanoparticle with variation in the crystallite size, chemical bonding, changes in weight and surface morphology. From the XRD results, it shows that the sample 1MNP-1Cs has optimum size of 13.42 ± 0.01 nm. From the FTIR analysis, it is revealed that there are three types of chemical bonding that occur in the MNP-Cs composites which are stretching vibrations of C-H, N–H vibration belonging to Cs and the Fe-O bonds from the MNP. From the FESEM analysis, it is found that the MNP-Cs composites have a wellshaped with spherical in form, as well as, smooth surfaces. As for TGA, the thermal decomposition of MNP nanocomposites was based on the amount of Cs and MNP used to produce the nanocomposites. Further studies will be conducted to find the optimum ratio of MNP-Cs for anticancer drug delivery application.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 Monica Namizie Asey, Norhaizan Mohd Esa, Che Azurahanim Che Abdullah
This work is licensed under a Creative Commons Attribution 4.0 International License.
The copyright of this article will be vested to author(s) and granted the journal right of first publication with the work simultaneously licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0) license, unless otherwise stated.