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Abstract— This study investigates the discrimination between pig leather and Polyurethane (PU) leather using Near-Infrared (NIR)
spectroscopy combined with chemometric techniques. Genuine leather derived from pig hides presents unique biochemical signatures
linked to its collagen structure. In contrast, PU leather is a synthetic polymer engineered to replicate the visual and tactile properties
of natural hides. Differentiating between these two materials is particularly crucial in industrial and cultural contexts, such as halal
certification, where accurate authentication is crucial. Principal Component Analysis (PCA) was first employed as an unsupervised
method to explore natural clustering. The PCA score plot revealed a clear separation between pig leather and PU leather, with the first
principal component (PC-1) explaining 96% of the total variance, confirming that the dominant chemical features are sufficient for
preliminary discrimination. For supervised classification, Partial Least Squares Discriminant Analysis (PLS-DA) revealed clear
separation in the score plot. The model was supported by robust calibration and validation statistics, with high coefficients of
determination (R*> > 0.99) and low Root Mean Square Error (RMSE). Overall, these findings demonstrate that portable NIR
spectroscopy, coupled with chemometrics, provides a rapid, non-destructive, and reliable authentication method with significant
potential for industrial quality control, fraud prevention, and regulatory compliance.

Keywords— Near-infrared spectroscopy; Chemometrics; Leather authentication, Halal authentication.
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[. INTRODUCTION

Leather remains one of the most widely used biomaterials
across industries, serving in apparel, footwear, upholstery,
automotive interiors, and industrial products due to its
durability, flexibility, breathability, and hydrothermal stability
[1]. Genuine leather is derived from animal hides, such as those
of cows, buffalo, goats, sheep, and pigs, and its conversion into
a stable material relies on tanning processes that prevent decay
and enhance its functional properties [2]. Among these sources,
pig leather is commonly used due to its low cost and ready
availability [2]. A hallmark of pigskin is the presence of pores
formed by hair follicles arranged in distinct triangular clusters,
a feature that remains visible even after tanning and finishing
[2](3][4].

Synthetic alternatives, particularly Polyurethane (PU)
leather, have become increasingly prominent. PU is a
segmented thermoplastic polymer with alternating soft and
hard domains that provide mechanical robustness, abrasion
resistance, and flexibility at low temperatures [1][5]. Notably,
the polymer’s tunable chemistry allows manufacturers to
design materials that replicate the surface grain, tactile feel, and
visual properties of natural leather [6][7]. Although these
innovations enhance material performance, they also blur
distinctions between genuine and synthetic leathers,
complicating authentication efforts. Natural collagen-based
leathers possess unique aesthetic and structural attributes;
however, PU products can closely mimic pigskin’s
characteristic triangular follicle pattern, creating a risk of
misidentification [2][4]. Despite advances in imaging and
microscopy, few studies have systematically validated the use
of Near-Infrared (NIR) spectroscopy combined with
chemometrics for halal-related authentication of pig-derived
leather.

In addition to the industrial need for material verification,
halal authentication has gained significant attention in recent
years, particularly in the food, cosmetics, and pharmaceutical
sectors  [8][9]. For example, spectroscopic  and
chromatographic techniques have been applied to authenticate
gelatin, edible oils, and cosmetic emulsions, ensuring
compliance with halal standards. These developments
highlight the broader challenge of ensuring religious and
regulatory compliance through reliable analytical technologies
[10]. Within the leather industry, the challenge is especially
acute since leather products are frequently traded across
international borders, and misidentification can undermine
consumer trust, disrupt export markets, and compromise
regulatory oversight.

Despite considerable advances in material characterization
techniques, a notable shortage remains in studies that
systematically evaluate the combined use of NIR spectroscopy
and chemometric analysis in the context of pig leather
authentication. Most prior work has either focused on food-
related applications or on the general differentiation between
natural and synthetic leathers without explicitly addressing
halal-sensitive contexts. This gap highlights the novelty and
relevance of the present study, which aims to make both
methodological contributions and provide a practical
framework for real-world applications in halal certification and
quality control.

Previous studies have explored various analytical methods
for leather authentication. Microscopic examination has long
been employed to identify characteristic collagen fiber
structures [11]. Meanwhile, molecular approaches such as
DNA analysis have been reported, though they remain time-
consuming and destructive. Vibrational spectroscopies,
particularly Fourier-Transform Infrared (FTIR) spectroscopy,
have demonstrated the ability to differentiate collagen-based
materials from polymeric alternatives [12]. Raman
spectroscopy has also been explored as a non-destructive
alternative, though it often suffers from fluorescence
interference and requires relatively expensive instrumentation.
More recently, hyperspectral imaging systems have been
applied to leather discrimination with promising results [13].
Despite these advances, such methods are often limited by cost,
destructive sampling, or the lack of portability, making them
unsuitable for routine industrial or regulatory applications.
These limitations further underscore the need for a portable,
cost-effective, and rapid method, such as NIR spectroscopy
combined with chemometric analysis.

Spectroscopic approaches, especially NIR spectroscopy,
provide an appealing alternative. Recent advances in
miniaturized and handheld NIR spectrometers have expanded
their use in real-world authentication scenarios [14][15].
Moreover, combining NIR data with machine learning or
advanced chemometric models has demonstrated strong
potential in food and material authentication [16]. With its non-
destructive, rapid, and portable nature, NIR spectroscopy has
been applied successfully in food authentication,
pharmaceutical quality control, and forensic analysis
[13][15][17]. Significantly, the amide I, II, and III vibrational
bands associated with collagen in genuine leather differ
fundamentally from the spectral features of PU, enabling
reliable discrimination [12].

In this study, NIR spectroscopy is combined with
chemometric methods to address the challenge of
distinguishing pig leather from PU leather. Principal
Component Analysis (PCA) is first applied to explore inherent
clustering patterns. This is followed by Partial Least Squares
Discriminant Analysis (PLS-DA) to achieve supervised
classification. The objectives are (1) to evaluate the spectral
differences between pig leather and PU leather, and (2) to
assess the comparative performance of unsupervised versus
supervised chemometric techniques for authentication.

The article is organized as follows. Section II provides an
overview of NIR spectroscopy and chemometrics, highlighting
the theoretical principles, instrumentation, and data analysis
strategies relevant to leather authentication. Section III
describes the materials and methods, including sample
preparation, spectral acquisition, and analytical workflow.
Section IV presents and discusses the results obtained from
both unsupervised and supervised chemometric techniques.
Finally, Section V concludes the paper by summarising the key
findings, outlining their industrial and regulatory implications,
and suggesting directions for future research.
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II. NEAR-INFRARED (NIR) SPECTROSCOPY AND
CHEMOMETRICS

A. Near-Infrared (NIR) Spectroscopy

NIR spectroscopy operates in the wavelength region of 780
to 2500 nm, where absorptions arise from the first, second, and
higher-order overtones of fundamental vibrations, as well as
from combination bands involving stretching and bending
motions of X—H bonds (X = C, O, or N) [5][21]. The first
overtone typically appears at about half the wavelength of the
fundamental vibration. In contrast, the second overtone occurs
at one-third, and combination bands arise when two vibrational
modes are simultaneously excited. These transitions yield
broad, overlapping peaks that are chemically information-rich
yet visually complex. Although their low intensity compared to
mid-infrared absorptions makes NIR spectra more vulnerable
to baseline shifts, scattering effects, and moisture interference,
the technique penetrates deeper into samples. It is particularly
suited for organic polymers and proteins. Consequently, while
NIR offers speed, portability, and non-destructive testing,
robust multivariate statistical tools are essential to extract
meaningful chemical information.

In NIR spectroscopy, absorptions arise primarily from the
first, second, and higher-order overtones of fundamental
vibrational modes, as well as from combination bands
involving stretching and bending motions of X-H bonds
(where X = C, O, or N). The first overtone typically appears at
about half the wavelength of the fundamental vibration, while
combination bands occur when two vibrational transitions are
simultaneously excited. These transitions result in broad and
overlapping peaks, which contribute to the complexity of NIR
spectra. Despite this challenge, the depth of penetration into
samples and the ability to probe hydrogen-containing bonds
make NIR particularly suited for studying organic polymers
and proteins. A limitation of the technique, however, lies in its
relatively low molar absorptivity compared to mid-infrared,
which makes advanced multivariate statistical analysis
essential for extracting meaningful chemical information.

Modern NIR instruments typically employ tungsten-halogen
lamps as stable broadband sources, Linear Variable Filters
(LVFs) or diffraction gratings for wavelength selection, and
detectors such as Indium Gallium Arsenide (InGaAs) that are
optimized for the short-wave NIR region. Many instruments
also integrate fiber optics, allowing flexible probe-based
measurements on irregular surfaces such as leather. Advances
in miniaturization have led to the development of handheld
spectrometers that maintain analytical accuracy while enabling
portability for on-site authentication in industrial or regulatory
settings ([15] et al., 2023).

The advantages of NIR spectroscopy extend beyond
portability and speed. Measurements require no reagents,
eliminate hazardous waste, and preserve the integrity of
valuable or sensitive samples. Environmental robustness is
another  strength: while traditional microscopy or
Deoxyribonucleic acid (DNA) analysis requires controlled
laboratory conditions, NIR can tolerate moderate fluctuations
in temperature, humidity, and light if adequate calibration
procedures are applied. Pre-scan referencing against certified

standards further ensures reproducibility across instruments
and sessions.

For leather authentication, NIR captures the molecular
differences between natural collagen-based hides and
polymeric synthetic substitutes such as PU. Notably, collagen
exhibits characteristic amide I, II, and III vibrational bands
linked to its triple-helical protein structure, whereas PU
presents distinctive absorptions related to urethane linkages
and aliphatic chains. Even when PU surfaces are engineered to
mimic pigskin’s follicle pattern, the molecular-level
differences in vibrational features enable reliable spectral
distinction [2][12]. Recent applications have demonstrated the
value of NIR in quality grading of bovine leather [17],
monitoring tanning processes, and differentiating regenerated
leathers using hyperspectral imaging systems [13]. Essentially,
these examples highlight NIR’s versatility as a green, fast, and
reproducible technique in the leather industry.

B. Chemometrics in Spectroscopic Authentication

Although NIR spectra contain extensive information, the
signals are broad, overlapping, and often influenced by
scattering effects. Direct interpretation is therefore limited, and
advanced statistical tools are essential. Chemometrics, the
fusion of chemistry, mathematics, and computer science,
provides this capability by transforming raw spectral data into
meaningful chemical and structural information [18][19].

Pre-processing steps are typically applied before modeling.
Techniques such as Multiplicative Scatter Correction (MSC),
Standard Normal Variate (SNV), and Savitzky-Golay
derivatives reduce baseline drift, correct for particle-size
scattering, and enhance peak resolution. These corrections
enhance comparability between samples and highlight subtle
differences that would otherwise be obscured by spectral noise
([13][17]. Without such pre-processing, classification
performance and predictive accuracy can be severely
compromised.

Chemometrics addresses these challenges by applying
multivariate mathematics and machine learning to extract
meaningful chemical information from complex spectral
datasets. While PCA and PLS-DA are widely used, other
methods have gained attention in recent years. In line with this,
Linear Discriminant Analysis (LDA) offers a classical
approach to class separation, although it is less effective with
collinear variables. Support Vector Machines (SVMs) and
Random Forests offer more flexible decision boundaries,
allowing them to capture nonlinear relationships in spectral
data. More recently, artificial neural networks (ANNs) and
deep learning (DL) algorithms have been investigated, with
promising results in overseeing large, high-dimensional
datasets.

In practice, a typical NIR-chemometrics workflow begins
with sample scanning, followed by spectral pre-processing
such as smoothing, scatter correction, or derivative
transformations. The pre-processed spectra are then fed into
unsupervised models, such as PCA, to reveal natural clustering,
and finally into supervised models such as PLS-DA, SVM, or
neural networks for classification. This integration transforms
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raw, overlapping spectral data into actionable results, enabling
reliable material authentication across diverse industrial
domains. The sequence is illustrated in Figure 1, which outlines
the integration of sample preparation, NIR spectral acquisition,
pre-processing, chemometric analysis, and the final
authentication decision.

In addition to PCA and PLS-DA, other chemometric
approaches have been reported in spectroscopic authentication
studies. LDA is a classical method that projects data into lower
dimensions by maximizing class separability, though it is less
robust when variables are collinear, as is often the case in NIR
spectra. SVMs have also been applied, offering strong
classification accuracy by creating nonlinear decision
boundaries, while ensemble learning methods such as Random
Forests provide flexibility in overseeing diverse datasets. More
recently, ANNs and DL models have been investigated for
spectral classification, leveraging their capacity to capture
nonlinear relationships. Nevertheless, despite these alternatives,
PLS-DA remains one of the most widely adopted tools in NIR
chemometrics due to its balance of interpretability, robustness,
and computational efficiency.

Unsupervised methods such as PCA are often the first step
in chemometric workflows. PCA reduces the high-dimensional
spectral dataset into principal components, which capture the
maximum variance in fewer dimensions. This provides a visual
representation of natural clustering between groups, such as
pigskin and PU leather, without requiring prior knowledge of
sample labels [2][5]. In practice, PCA can reveal whether
samples are inherently separable, supporting decisions about
whether supervised modeling is justified.

Supervised methods provide more rigorous classification.
PLS-DA, one of the most widely applied approaches in NIR
chemometrics, incorporates known class information and
projects spectral data into latent variables that maximize
between-class variance. PLS-DA is particularly suited to NIR
data due to its robustness against collinearity and noise, and it
has repeatedly demonstrated predictive accuracy exceeding 99%
in material authentication tasks [12][18][19]. Beyond PLS-DA,
other supervised methods, such as SVMs and Random Forest
classifiers, have been reported; however, PLS-DA remains
attractive due to its interpretability and computational
efficiency.

The integration of NIR spectroscopy with chemometrics
forms a powerful authentication strategy. NIR provides rapid,
non-invasive acquisition of spectral data, while chemometrics
extracts and interprets discriminatory features. Furthermore,
this combined workflow has been validated in diverse fields,
including food fraud detection, pharmaceutical quality
assurance, environmental monitoring, and forensic science
[15][20]. In the context of leather authentication, where
cultural and regulatory requirements demand reliable
identification of pig-derived materials, the NIR-chemometrics
synergy offers a fast, reproducible, and scalable solution that
bridges scientific accuracy with real-world applicability.

Sample Preparation
(Pig vs PU leather samples)

r

NIR Spectral Acquisition
(Light source - Detector, 950—
1650 nm spectra)

y

Spectral Pre-Processing
(SNV, MSC, smoothing, derivatives)

4

Chemometric Analysis
PCA - clustering
PLS-DA - classification

r

Authentication Output
(Pig leather / PU leather)

Figure 1. Workflow of NIR spectroscopy combined with chemometrics for
leather authentication.

III. MATERIALS AND METHOD

A. Sample Preparation

Leather specimens representing different sources were
obtained from both commercial and educational suppliers.
Pigskin samples were sourced from Saigon Leather Trading &
Production Company Limited, Ho Chi Minh, Vietnam.
Additionally, a PU leather specimen was obtained from a faux
leather notebook provided by Kolej Komuniti Gerik, Perak,
Malaysia. Notably, this PU material displayed a dotted
triangular pattern resembling that of pigskin; however, its
synthetic origin was formally verified by Jabatan Agama Islam
Perak (JAIPk), Malaysia.

Table 1 presents the identification code, leather type, and
colour of each sample used in this study. To ensure consistency,
all specimens were cut into squares measuring 3 cm x 3 cm and
stored at ambient room temperature in sealed containers prior
to analysis. The samples were examined without chemical or
physical pre-treatment. For spectral acquisition, only the inner
(flesh) surface of the leather was exposed, thereby avoiding
potential interference from finishing or coatings typically
applied to the grain (outer) surface of the material.

During scanning, each 3 cm X 3 cm square was repositioned
incrementally so that multiple points across the sample were
interrogated. This approach was employed to capture
representative spectra from the heterogeneous leather surface
and minimize localized variability. The scanning protocol thus
provided an unbiased spectral dataset suitable for subsequent
chemometric analysis.
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Table 1. List of leather samples and sampling

Label Sample Type of leather Colour
P7 Pig Suede Pig Gold bull
P8 Pig Suede Pig Creamy Yellow
PU1 Polyurethane Faux leather Light Brown
PU2 Polyurethane Faux leather Light Brown

B. Near Infrared (NIR) Spectroscopy Measurement

Spectral acquisition was performed using a MicroNIR
1700EC spectrometer (VIAVI Solutions Inc., Arizona, USA)
in combination with proprietary MicroNIR software for data
collection. The instrument operates within the Short-Wave
Near-Infrared (SW-NIR) region, specifically spanning 950 to
1650 nm, which corresponds to the first and second overtone
regions of molecular vibrations. Note that this spectral window
has been widely applied in food authentication, pharmaceutical
analysis, and material characterization due to its sensitivity to
functional groups such as O—H, C-H, and N-H overtones ([15]
etal., 2023).

The MicroNIR device is equipped with a tungsten—halogen
light source, LVFs, and an InGaAs detector, enabling stable
and high-resolution spectral acquisition. Prior to each
measurement sequence, calibration was performed by
acquiring dark scans (with lights off) and reference scans (with
lights on against a certified white background). To ensure
instrument stability, the light source was allowed to warm up
for approximately 10 minutes, or until the internal temperature
reached equilibrium.

To minimize the influence of stray light and environmental
variability, all measurements were conducted in a darkened
enclosure, with the spectrometer placed inside a covered box
during scanning. Each leather specimen was interrogated
within the wavelength range of 950 to 1650 nm, and multiple
scans were taken across different surface positions to ensure
representative sampling. The spectral resolution of the
instrument was 6.25 nm with an integration time of 10 ms per
scan. The calibration protocol was repeated every few minutes
of measurement to minimize drift associated with light source
fluctuations. Concurrently, this scanning procedure yielded a
robust spectral dataset, which was subsequently exported for
chemometric modeling. All raw spectra were exported to
Microsoft Excel for initial compilation and subsequently
subjected to pre-processing and chemometric analysis.

C. Chemometric techniques

All chemometric analyses were conducted using The
Unscrambler X version 10.4 (CAMO Software, Massachusetts,
USA). Prior to multivariate modelling, the raw spectral data
were subjected to standard pre-processing procedures,
including spectral smoothing and derivatization, to reduce
baseline shifts, correct scattering effects, and enhance

resolution of overlapping absorption bands. Such pre-
processing is essential in NIR spectroscopy to minimize noise
and highlight subtle chemical differences between samples [13]
[17].

Two complementary chemometric strategies were employed.
For exploratory analysis, an unsupervised PCA was applied to
reduce data dimensionality and visualize inherent clustering
patterns among pig leather and PU samples. In addition, PCA
score plots enabled the evaluation of the variance structure and
the identification of separation trends without prior class
information.

For classification, a supervised approach was implemented

using PLS-DA in conjunction with pre-processed NIR data.
PLS-DA is an extension of Partial Least Squares (PLS)
regression adapted for classification tasks, and has since
become a widely used supervised pattern-recognition method
in chemometrics [18]. PLS-DA was preferred over classical
Discriminant Analysis (DA) as it is better suited for high-
dimensional, collinear spectral datasets typical of NIR studies,
while simultaneously maximizing inter-class variance and
minimizing intra-class variance to provide robust
discrimination between pig leather and PU leather. The
performance of the supervised model was assessed through
calibration and validation sets, with statistical parameters such
as coefficient of determination (R?), Root Mean Square Error
(RMSE), and classification accuracy employed to evaluate
predictive reliability.
This combined workflow ensured that unsupervised methods
provided an unbiased overview of sample distribution, while
supervised techniques delivered rigorous, quantitative
classification. The supervised PLS-DA model, which achieved
perfect classification accuracy in this study, also highlighted
chemically meaningful discriminators. Meanwhile, regression
coefficients indicated that amide bands near 1450 nm were
critical for identifying collagen-rich pig leather, while CH
combination bands characterized PU leather. This
correspondence between spectral chemistry and classification
outcome enhances confidence in the model’s interpretability.

IV.RESULTS AND DISCUSSIONS

A. Resulted NIR Spectra

Figure 2 presents the resulting NIR spectra of pig leather and
PU samples, illustrating distinct absorption profiles for both
materials. The pig leather spectrum exhibits characteristic
broad bands associated with protein and collagen structures,
reflecting the presence of amide and N—H functional groups. In
contrast, the PU spectrum demonstrates smoother, polymer-
related absorption patterns, primarily attributed to C—H and
C=0 overtones of synthetic PU. In essence, these observable
spectral differences indicate inherent chemical and structural
variations between natural and synthetic leathers, forming the
foundation for subsequent chemometric analyses aimed at
quantitative discrimination.
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Figure 2. The resulting NIR spectra of pig leather and PU samples. Distinct
spectral features are observed between the two materials, where pig leather
shows protein- and collagen-related absorption bands, while PU exhibits
polymeric C—H and C=O overtones. These variations highlight the inherent
chemical differences that enable effective discrimination using chemometric
analysis.

Following the examination of the NIR spectra (Figure 2), PCA
was performed to further explore the natural grouping patterns
among the samples.

B. Exploratory analysis using unsupervised techniques -
Principal Component Analysis (PCA).

PCA was employed as an unsupervised chemometric
technique to explore the natural clustering of pig leather and
PU leather samples. The PCA score plot (Figure 3) displays a
clear separation between the two material groups along the first
principal component (PC-1), which explains 96% of the total
variance. The second principal component (PC-2), accounting
for an additional 3% of the variance, contributed minimally to
class separation yet confirmed the absence of overlap between
sample categories. The distinct clustering suggests that the
inherent spectral differences between pig leather and PU
leather dominate the dataset, allowing reliable discrimination
even without supervised classification.

This separation can be attributed to the differences in
chemical composition between collagen-based natural leather
and polymeric PU leather. NIR spectroscopy captures overtone
and combination bands of O-H, C-H, and N-H vibrations,
which vary markedly between proteinaceous collagen fibres
and synthetic PU chains [5][21]. The clustering of pig leather
samples in one region of the PCA space and PU leather in
another confirms that the major sources of variance are
associated with their underlying structural and chemical
differences. This is consistent with previous studies that
applied PCA to leather authentication [2][12].

The dominance of PC-1 in explaining variance (96%)
highlights that a single latent dimension is sufficient to capture
the majority of the discriminatory information. This
observation is consistent with the strong contrast reported in
the literature between genuine and artificial leathers, as
determined by vibrational spectroscopy [20]. Furthermore, the
lack of overlap in the PCA scores indicates that exploratory
unsupervised techniques alone can provide preliminary

evidence for material authentication before applying
supervised models, such as LDA or PLS-DA, for confirmatory
classification.

0.3
0.2
-y
a 0.1
Q§
g ° \
0.1 : “
-0.2
-0.5 0 0.5 1
PC-1 (96%)
m Pig PU

Figure 3. PCA score plot of pig leather (blue squares) and PU leather (orange
circles). PC-1 (96% variance) clearly separates pig leather from PU leather,
while PC-2 (3% variance) accounts for minor variation within.

Overall, the PCA results demonstrate that unsupervised
chemometric techniques can already reveal distinct grouping
between pig leather and PU leather. This verifies the
discriminatory potential of NIR data and justifies further
application of supervised approaches for quantitative
classification. Examination of PCA loading plots further
confirmed that the primary discriminating variables
corresponded to absorption features associated with collagen
amide bonds in pig leather and aliphatic CH overtones in PU
leather. Specifically, strong contributions were observed near
1200-1500 nm, which are consistent with combination bands
of N—H and C-H vibrations in collagen. The PU samples, in
contrast, exhibited higher loadings in regions associated with
CH: stretching overtones. Overall, these findings align with the
established molecular differences between protein-based and
polymeric materials and support the interpretation of PCA
clustering patterns.

C. Classification using supervised techniques — Partial Least
Squares Discriminant Analysis (PLS-DA)

The classification of pig leather and PU leather was
successfully performed using PLS-DA as the supervised
chemometric technique. Figure 4 illustrates the PLS-DA score
plot, in which the two samples are distinctly separated along
the Factor-1 axis. This indicates that the spectral features
exploited by the classifier are sufficiently discriminative to
differentiate leather (collagen-based) from leather-like PU
materials. This observation is consistent with published work
indicating that collagen’s amide bands (I, II, III) enable the
reliable discrimination of authentic leather from synthetic
alternatives using vibrational spectroscopy coupled with
chemometrics [2][12].
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Figure 4. A 2D score plot (Factor-1 vs Factor 2) for the developed PLS-DA
model obtained for pig leather (blue square) and PU leather (orange circles). A
clear separation between pig leather and PU leather is seen across Factor 1,
which explains 98% and 99% of the variance in X and Y variables.

The regression plot of predicted versus reference class
values (Figure 5) demonstrates the accuracy of the supervised
model: both calibration and validation yielded slopes near unity
with high R? and low RMSE. In chemometric modelling, R?
and RMSE, often assessed alongside cross-validation, are the
canonical criteria for goodness-of-fit and predictive
performance (Wold, Sjostrom & Eriksson, 2001).
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Figure 5. Predicted versus reference class values for pig leather and PU leather
using supervised chemometric modeling. Both calibration (blue) and validation
(red) datasets yielded slopes close to unity, with R? values above 0.99 and low
RMSE, indicating robust classification performance.

Finally, the box plot of predicted Y-values for individual
samples (Figure 6) highlights the classification stability: pig
leather (A1-AS8) clusters tightly around the positive class,
while PU leather (B1-B8) is consistently assigned to the
negative class, with minimal within-class dispersion. This
behavior is expected for a well-separated two-group PLS-DA
model [18].
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Figure 6. Box plot of predicted Y-values for each sample (A1-AS8: pig leather;
B1-BS8: PU leather). The samples are clearly separated into their respective
classes, with minimal variation within each group, confirming the reliability of
the classification model.

Collectively, these results demonstrate that supervised
chemometric modelling, in particular PLS-DA applied to
spectroscopic features, is a reliable approach for distinguishing
pig leather from PU leather. This aligns with the broader
literature on spectroscopic authentication of leather versus
quantitative classifications [12][18]. The supervised PLS-DA
model, which achieved perfect classification accuracy in this
study, also highlighted chemically meaningful discriminators.
Moreover, regression coefficients indicated that amide bands
near 1450 nm were critical for identifying collagen-rich pig
leather, while CH combination bands characterized PU leather.

This correspondence between spectral chemistry and
classification outcome enhances confidence in the model’s
interpretability.

Analysis of the regression coefficients revealed that the most
influential spectral regions for classification were those
associated with the amide bands of collagen, particularly near
1450 nm, as well as the CH combination bands in the PU
samples. These discriminating variables are chemically
meaningful, demonstrating that the classification model was
not only statistically accurate but also based on interpretable
molecular features. Nevertheless, it should be noted that the
dataset used in this study was relatively limited in size.
Although the model achieved high classification accuracy,
larger validation datasets incorporating different leather types,
tanning methods, and surface finishes will be essential to
confirm robustness under industrial conditions.

IV. CONCLUSION

This study demonstrated the successful application of
chemometric techniques coupled with NIR spectroscopy to
distinguish pig leather from PU leather. The unsupervised
exploratory analysis using PCA revealed clear separation
between the two material groups, with PC-1 explaining the
majority of variance (96%). This highlights that the inherent
chemical and structural differences between natural collagen-
based leather and synthetic PU dominate the spectral data.

Building on this exploratory insight, supervised
classification with PLS-DA achieved excellent calibration and
validation performance (R? > 0.99, low RMSE), confirming its
robustness, predictive power, and reproducibility. Together,
PCA and PLS-DA formed a complementary workflow: PCA
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offered exploratory insight into natural clustering, while PLS-
DA delivered rigorous quantitative confirmation of class
separation.

The findings of this study are consistent with prior research
applying vibrational spectroscopy to leather authentication. [17]
demonstrated the potential of NIR for bovine leather quality
evaluation, while [13] applied hyperspectral imaging to
differentiate natural and regenerated leathers. [12] indicated
that FTIR-ATR could distinguish collagen-based materials
from polymeric alternatives with high accuracy. The present
work extends this literature by confirming that portable NIR
devices, combined with chemometrics, are capable of
achieving similarly reliable discrimination in pig versus PU
leather, thereby broadening the scope of spectroscopic
authentication into culturally and religiously sensitive domains.

These results pose crucial industrial and regulatory
implications. For the leather and textile sectors, rapid and non-
destructive authentication is critical to ensure product quality,
combat fraudulent labeling, and maintain consumer confidence.
In halal certification, in particular, the ability to accurately
distinguish pig leather from synthetic alternatives provides
regulatory bodies with a reliable and field-deployable tool for
compliance monitoring. The combination of portable NIR
spectroscopy and chemometric analysis, therefore, represents a
practical ~ solution for industries requiring routine
authentication.

Future research should expand the dataset to include
additional leather species, various tanning techniques, and
finished consumer products to further validate model
robustness. The integration of advanced chemometric methods,
such as SVMs, Random Forests, or DL algorithms, may further
enhance performance. Ultimately, hybrid approaches that
integrate NIR spectroscopy with complementary techniques,
such as Raman or hyperspectral imaging, could offer a more
comprehensive framework for leather authentication in real-
world applications.

CONFLICT OF INTEREST

The authors declare that there is no conflict of interest
regarding the publication of this paper.

ACKNOWLEDGEMENTS

The authors wish to express their sincere appreciation to
Universiti Sains Islam Malaysia (USIM) for the financial
support provided under the Transdisciplinary Grant Scheme
[PPP/TRANSDISIPLINARI/FST/USIM/18523]. The authors
also extend their gratitude to Dr. Katrul Nadia Basri for her
assistance during the MicroNIR experimental setup.

(1]

(8]

]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

REFERENCES

J. Liu, F. Recupido, G. C. Lama, M. Oliviero, L. Verdolotti, and M.
Lavorgna, “Recent advances concerning polyurethane in leather
applications: An overview of conventional and greener solutions,”
Collagen and Leather, vol. 5, Art. no. 8, 2023.

M. E. S. Mirghani, H. M. Salleh, Y. B. Che Man, and I. Jaswir, “Rapid
authentication of leather and leather products,” Advances in Natural and
Applied Sciences, vol. 6, no. 5, pp. 651-659, 2012.

R. Cantero, T. Canals, and H. Iturriaga, “Near infrared reflectance
spectroscopy as a tool for the control of sheep leather defatting,” Talanta,
vol. 71, no. 4, pp. 1690-1695, 2007.

Sidestone Press, The Material and Cultural Dimensions of Leather.
Leiden, Netherlands: Sidestone Press, 2012.

D. A. Burns and E. W. Ciurczak, Eds., Handbook of Near-Infrared
Analysis, 3rd ed. Boca Raton, FL, USA: CRC Press, 2007.

S. Guo, “Enhancing mechanical properties and abrasion resistance of
waterborne polyurethane composites using sustainable biomass,”
Materials Today Sustainability, vol. 14, Art. no. 100250, 2025.

C. Florio, A. G. Rombola, and F. Manzoni, “The potential of near
infrared (NIR) spectroscopy coupled to PCA for product and tanning
process control of innovative leathers,” Scientific Reports, vol. 15, no.
1, Art. no. 17598, 2025.

A. M. Fathima, M. S. A. Yusoff, and M. N. Yunos, “Advanced halal
authentication methods and technology: A review,” Foods, vol. 13, no.
5, Art. no. 881, 2024.

I. Usman, R. A. Rahman, and D. Hashim, “Advances and challenges in
conventional and modern analytical methods for ensuring food halal
authenticity,” Frontiers in Nutrition, vol. 10, Art. no. 1091660, 2023.
C. M. Airin, S. N. A. Rahman, and S. M. Zain, “Fingerprinting using
vibrational spectroscopy (FT-NIR, FT-MIR, Raman, HSI) for halal
meat authentication,” Food Chemistry Advances, vol. 6, Art. no. 100290,
2025.

W. Meyer, “Collagen fibre arrangement in the dermis of pig skin,”
Journal of Anatomy, vol. 134, no. 1, pp. 139-148, 1982.

A. Amirvaresi and H. Parastar, “Miniaturized NIR spectroscopy and
chemometrics: A smart combination to solve food authentication
challenges,” Frontiers in Analytical Science, vol. 3, Art. no. 1118590,
2023.

G. Gullifa, L. Barone, E. Papa, A. Giuffrida, S. Materazzi, and R.
Risoluti, “Portable NIR spectroscopy: The route to green analytical
chemistry,” Frontiers in Chemistry, vol. 11, Art. no. 1214825, 2023.

F. Coppola, A. C. Olivieri, and M. Casale, “Near-infrared spectroscopy
and machine learning for authentication and quantitative prediction in
food systems,” Foods, vol. 12, no. 10, Art. no. 2065, 2023.

P. Narayanan and S. K. Janardhanan, “An approach towards
identification of leather from leather-like polymeric material using
FTIR-ATR technique,” Collagen and Leather, vol. 6, Art. no. 1,2024.
Q. Hou, X. Jin, Y. Qiu, Z. Zhou, H. Zhang, J. Jiang, W. Tian, and C.
Zhu, “Spectral characterization and identification of natural and
regenerated leather based on hyperspectral imaging system,” Coatings,
vol. 13, no. 2, Art. no. 450, 2023.

C. E. M. Braz, H. C. S. Carneiro, D. F. Pereira, A. G. Cruz, J. P. Cruz-
Tirado, D. F. Barbin, and F. O. Leme, “Potential of near-infrared
spectroscopy for quality evaluation of bovine leather,” Analytica
Chimica Acta, vol. 1034, pp. 154-162, 2018.

R. G. Brereton, Chemometrics for Pattern Recognition. Chichester,
U.K.: John Wiley & Sons, 2009.

S. Wold, M. Sjostrom, and L. Eriksson, “PLS-regression: A basic tool
of chemometrics,” Chemometrics and Intelligent Laboratory Systems,
vol. 58, no. 2, pp. 109-130, 2001.

H. M. Heise and P. Lampen, “Vibrational spectroscopy in food control,”
in Chemical Analysis of Food: Techniques and Applications,2nd ed., Y.
Pico, Ed. Amsterdam, Netherlands: Elsevier, 2020, pp. 257-284.

J. Workman and L. Weyer, Practical Guide to Interpretive Near-
Infrared Spectroscopy. Boca Raton, FL, USA: CRC Press, 2012.

MJoSHT Vol. 11, Special Issue on the 5th International Conference on Recent Advancements in Science

and Technology (ICoRAST 2025)



