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Abstract— This study investigates the discrimination between pig leather and Polyurethane (PU) leather using Near-Infrared (NIR) 

spectroscopy combined with chemometric techniques. Genuine leather derived from pig hides presents unique biochemical signatures 

linked to its collagen structure. In contrast, PU leather is a synthetic polymer engineered to replicate the visual and tactile properties 

of natural hides. Differentiating between these two materials is particularly crucial in industrial and cultural contexts, such as halal 

certification, where accurate authentication is crucial. Principal Component Analysis (PCA) was first employed as an unsupervised 

method to explore natural clustering. The PCA score plot revealed a clear separation between pig leather and PU leather, with the first 

principal component (PC-1) explaining 96% of the total variance, confirming that the dominant chemical features are sufficient for 

preliminary discrimination. For supervised classification, Partial Least Squares Discriminant Analysis (PLS-DA) revealed clear 

separation in the score plot. The model was supported by robust calibration and validation statistics, with high coefficients of 

determination (R² > 0.99) and low Root Mean Square Error (RMSE). Overall, these findings demonstrate that portable NIR 

spectroscopy, coupled with chemometrics, provides a rapid, non-destructive, and reliable authentication method with significant 

potential for industrial quality control, fraud prevention, and regulatory compliance. 

 

Keywords— Near-infrared spectroscopy; Chemometrics; Leather authentication, Halal authentication. 
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I. INTRODUCTION 

Leather remains one of the most widely used biomaterials 

across industries, serving in apparel, footwear, upholstery, 

automotive interiors, and industrial products due to its 

durability, flexibility, breathability, and hydrothermal stability 

[1]. Genuine leather is derived from animal hides, such as those 

of cows, buffalo, goats, sheep, and pigs, and its conversion into 

a stable material relies on tanning processes that prevent decay 

and enhance its functional properties [2]. Among these sources, 

pig leather is commonly used due to its low cost and ready 

availability [2]. A hallmark of pigskin is the presence of pores 

formed by hair follicles arranged in distinct triangular clusters, 

a feature that remains visible even after tanning and finishing 

[2][3][4]. 

Synthetic alternatives, particularly Polyurethane (PU) 

leather, have become increasingly prominent. PU is a 

segmented thermoplastic polymer with alternating soft and 

hard domains that provide mechanical robustness, abrasion 

resistance, and flexibility at low temperatures [1][5]. Notably, 

the polymer’s tunable chemistry allows manufacturers to 

design materials that replicate the surface grain, tactile feel, and 

visual properties of natural leather [6][7]. Although these 

innovations enhance material performance, they also blur 

distinctions between genuine and synthetic leathers, 

complicating authentication efforts. Natural collagen-based 

leathers possess unique aesthetic and structural attributes; 

however, PU products can closely mimic pigskin’s 

characteristic triangular follicle pattern, creating a risk of 

misidentification [2][4]. Despite advances in imaging and 

microscopy, few studies have systematically validated the use 

of Near-Infrared (NIR) spectroscopy combined with 

chemometrics for halal-related authentication of pig-derived 

leather. 

In addition to the industrial need for material verification, 

halal authentication has gained significant attention in recent 

years, particularly in the food, cosmetics, and pharmaceutical 

sectors [8][9]. For example, spectroscopic and 

chromatographic techniques have been applied to authenticate 

gelatin, edible oils, and cosmetic emulsions, ensuring 

compliance with halal standards. These developments 

highlight the broader challenge of ensuring religious and 

regulatory compliance through reliable analytical technologies 

[10]. Within the leather industry, the challenge is especially 

acute since leather products are frequently traded across 

international borders, and misidentification can undermine 

consumer trust, disrupt export markets, and compromise 

regulatory oversight. 

Despite considerable advances in material characterization 

techniques, a notable shortage remains in studies that 

systematically evaluate the combined use of NIR spectroscopy 

and chemometric analysis in the context of pig leather 

authentication. Most prior work has either focused on food-

related applications or on the general differentiation between 

natural and synthetic leathers without explicitly addressing 

halal-sensitive contexts. This gap highlights the novelty and 

relevance of the present study, which aims to make both 

methodological contributions and provide a practical 

framework for real-world applications in halal certification and 

quality control. 

 

Previous studies have explored various analytical methods 

for leather authentication. Microscopic examination has long 

been employed to identify characteristic collagen fiber 

structures [11]. Meanwhile, molecular approaches such as 

DNA analysis have been reported, though they remain time-

consuming and destructive. Vibrational spectroscopies, 

particularly Fourier-Transform Infrared (FTIR) spectroscopy, 

have demonstrated the ability to differentiate collagen-based 

materials from polymeric alternatives [12]. Raman 

spectroscopy has also been explored as a non-destructive 

alternative, though it often suffers from fluorescence 

interference and requires relatively expensive instrumentation. 

More recently, hyperspectral imaging systems have been 

applied to leather discrimination with promising results [13]. 

Despite these advances, such methods are often limited by cost, 

destructive sampling, or the lack of portability, making them 

unsuitable for routine industrial or regulatory applications. 

These limitations further underscore the need for a portable, 

cost-effective, and rapid method, such as NIR spectroscopy 

combined with chemometric analysis. 

Spectroscopic approaches, especially NIR spectroscopy, 

provide an appealing alternative. Recent advances in 

miniaturized and handheld NIR spectrometers have expanded 

their use in real-world authentication scenarios [14][15]. 

Moreover, combining NIR data with machine learning or 

advanced chemometric models has demonstrated strong 

potential in food and material authentication [16]. With its non-

destructive, rapid, and portable nature, NIR spectroscopy has 

been applied successfully in food authentication, 

pharmaceutical quality control, and forensic analysis 

[13][15][17]. Significantly, the amide I, II, and III vibrational 

bands associated with collagen in genuine leather differ 

fundamentally from the spectral features of PU, enabling 

reliable discrimination [12]. 

In this study, NIR spectroscopy is combined with 

chemometric methods to address the challenge of 

distinguishing pig leather from PU leather. Principal 

Component Analysis (PCA) is first applied to explore inherent 

clustering patterns. This is followed by Partial Least Squares 

Discriminant Analysis (PLS-DA) to achieve supervised 

classification. The objectives are (1) to evaluate the spectral 

differences between pig leather and PU leather, and (2) to 

assess the comparative performance of unsupervised versus 

supervised chemometric techniques for authentication. 

The article is organized as follows. Section II provides an 

overview of NIR spectroscopy and chemometrics, highlighting 

the theoretical principles, instrumentation, and data analysis 

strategies relevant to leather authentication. Section III 

describes the materials and methods, including sample 

preparation, spectral acquisition, and analytical workflow. 

Section IV presents and discusses the results obtained from 

both unsupervised and supervised chemometric techniques. 

Finally, Section V concludes the paper by summarising the key 

findings, outlining their industrial and regulatory implications, 

and suggesting directions for future research. 
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II. NEAR-INFRARED (NIR) SPECTROSCOPY AND 

CHEMOMETRICS 

 

A. Near-Infrared (NIR) Spectroscopy 

NIR spectroscopy operates in the wavelength region of 780 

to 2500 nm, where absorptions arise from the first, second, and 

higher-order overtones of fundamental vibrations, as well as 

from combination bands involving stretching and bending 

motions of X–H bonds (X = C, O, or N) [5][21]. The first 

overtone typically appears at about half the wavelength of the 

fundamental vibration. In contrast, the second overtone occurs 

at one-third, and combination bands arise when two vibrational 

modes are simultaneously excited. These transitions yield 

broad, overlapping peaks that are chemically information-rich 

yet visually complex. Although their low intensity compared to 

mid-infrared absorptions makes NIR spectra more vulnerable 

to baseline shifts, scattering effects, and moisture interference, 

the technique penetrates deeper into samples. It is particularly 

suited for organic polymers and proteins. Consequently, while 

NIR offers speed, portability, and non-destructive testing, 

robust multivariate statistical tools are essential to extract 

meaningful chemical information. 

In NIR spectroscopy, absorptions arise primarily from the 

first, second, and higher-order overtones of fundamental 

vibrational modes, as well as from combination bands 

involving stretching and bending motions of X–H bonds 

(where X = C, O, or N). The first overtone typically appears at 

about half the wavelength of the fundamental vibration, while 

combination bands occur when two vibrational transitions are 

simultaneously excited. These transitions result in broad and 

overlapping peaks, which contribute to the complexity of NIR 

spectra. Despite this challenge, the depth of penetration into 

samples and the ability to probe hydrogen-containing bonds 

make NIR particularly suited for studying organic polymers 

and proteins. A limitation of the technique, however, lies in its 

relatively low molar absorptivity compared to mid-infrared, 

which makes advanced multivariate statistical analysis 

essential for extracting meaningful chemical information. 

Modern NIR instruments typically employ tungsten-halogen 

lamps as stable broadband sources, Linear Variable Filters 

(LVFs) or diffraction gratings for wavelength selection, and 

detectors such as Indium Gallium Arsenide (InGaAs) that are 

optimized for the short-wave NIR region. Many instruments 

also integrate fiber optics, allowing flexible probe-based 

measurements on irregular surfaces such as leather. Advances 

in miniaturization have led to the development of handheld 

spectrometers that maintain analytical accuracy while enabling 

portability for on-site authentication in industrial or regulatory 

settings ([15] et al., 2023). 

The advantages of NIR spectroscopy extend beyond 

portability and speed. Measurements require no reagents, 

eliminate hazardous waste, and preserve the integrity of 

valuable or sensitive samples. Environmental robustness is 

another strength: while traditional microscopy or 

Deoxyribonucleic acid (DNA) analysis requires controlled 

laboratory conditions, NIR can tolerate moderate fluctuations 

in temperature, humidity, and light if adequate calibration 

procedures are applied. Pre-scan referencing against certified 

standards further ensures reproducibility across instruments 

and sessions. 

For leather authentication, NIR captures the molecular 

differences between natural collagen-based hides and 

polymeric synthetic substitutes such as PU. Notably, collagen 

exhibits characteristic amide I, II, and III vibrational bands 

linked to its triple-helical protein structure, whereas PU 

presents distinctive absorptions related to urethane linkages 

and aliphatic chains. Even when PU surfaces are engineered to 

mimic pigskin’s follicle pattern, the molecular-level 

differences in vibrational features enable reliable spectral 

distinction [2][12]. Recent applications have demonstrated the 

value of NIR in quality grading of bovine leather [17], 

monitoring tanning processes, and differentiating regenerated 

leathers using hyperspectral imaging systems [13]. Essentially, 

these examples highlight NIR’s versatility as a green, fast, and 

reproducible technique in the leather industry. 

 

 

 

B. Chemometrics in Spectroscopic Authentication 

Although NIR spectra contain extensive information, the 

signals are broad, overlapping, and often influenced by 

scattering effects. Direct interpretation is therefore limited, and 

advanced statistical tools are essential. Chemometrics, the 

fusion of chemistry, mathematics, and computer science, 

provides this capability by transforming raw spectral data into 

meaningful chemical and structural information [18][19]. 

Pre-processing steps are typically applied before modeling. 

Techniques such as Multiplicative Scatter Correction (MSC), 

Standard Normal Variate (SNV), and Savitzky-Golay 

derivatives reduce baseline drift, correct for particle-size 

scattering, and enhance peak resolution. These corrections 

enhance comparability between samples and highlight subtle 

differences that would otherwise be obscured by spectral noise 

([13][17]. Without such pre-processing, classification 

performance and predictive accuracy can be severely 

compromised. 

Chemometrics addresses these challenges by applying 

multivariate mathematics and machine learning to extract 

meaningful chemical information from complex spectral 

datasets. While PCA and PLS-DA are widely used, other 

methods have gained attention in recent years. In line with this, 

Linear Discriminant Analysis (LDA) offers a classical 

approach to class separation, although it is less effective with 

collinear variables. Support Vector Machines (SVMs) and 

Random Forests offer more flexible decision boundaries, 

allowing them to capture nonlinear relationships in spectral 

data. More recently, artificial neural networks (ANNs) and 

deep learning (DL) algorithms have been investigated, with 

promising results in overseeing large, high-dimensional 

datasets. 

In practice, a typical NIR-chemometrics workflow begins 

with sample scanning, followed by spectral pre-processing 

such as smoothing, scatter correction, or derivative 

transformations. The pre-processed spectra are then fed into 

unsupervised models, such as PCA, to reveal natural clustering, 

and finally into supervised models such as PLS-DA, SVM, or 

neural networks for classification. This integration transforms 
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raw, overlapping spectral data into actionable results, enabling 

reliable material authentication across diverse industrial 

domains. The sequence is illustrated in Figure 1, which outlines 

the integration of sample preparation, NIR spectral acquisition, 

pre-processing, chemometric analysis, and the final 

authentication decision. 

In addition to PCA and PLS-DA, other chemometric 

approaches have been reported in spectroscopic authentication 

studies. LDA is a classical method that projects data into lower 

dimensions by maximizing class separability, though it is less 

robust when variables are collinear, as is often the case in NIR 

spectra. SVMs have also been applied, offering strong 

classification accuracy by creating nonlinear decision 

boundaries, while ensemble learning methods such as Random 

Forests provide flexibility in overseeing diverse datasets. More 

recently, ANNs and DL models have been investigated for 

spectral classification, leveraging their capacity to capture 

nonlinear relationships. Nevertheless, despite these alternatives, 

PLS-DA remains one of the most widely adopted tools in NIR 

chemometrics due to its balance of interpretability, robustness, 

and computational efficiency. 

Unsupervised methods such as PCA are often the first step 

in chemometric workflows. PCA reduces the high-dimensional 

spectral dataset into principal components, which capture the 

maximum variance in fewer dimensions. This provides a visual 

representation of natural clustering between groups, such as 

pigskin and PU leather, without requiring prior knowledge of 

sample labels [2][5]. In practice, PCA can reveal whether 

samples are inherently separable, supporting decisions about 

whether supervised modeling is justified. 

Supervised methods provide more rigorous classification. 

PLS-DA, one of the most widely applied approaches in NIR 

chemometrics, incorporates known class information and 

projects spectral data into latent variables that maximize 

between-class variance. PLS-DA is particularly suited to NIR 

data due to its robustness against collinearity and noise, and it 

has repeatedly demonstrated predictive accuracy exceeding 99% 

in material authentication tasks [12][18][19]. Beyond PLS-DA, 

other supervised methods, such as SVMs and Random Forest 

classifiers, have been reported; however, PLS-DA remains 

attractive due to its interpretability and computational 

efficiency. 

The integration of NIR spectroscopy with chemometrics 

forms a powerful authentication strategy. NIR provides rapid, 

non-invasive acquisition of spectral data, while chemometrics 

extracts and interprets discriminatory features. Furthermore, 

this combined workflow has been validated in diverse fields, 

including food fraud detection, pharmaceutical quality 

assurance, environmental monitoring, and forensic science 

[15][20]. In the context of leather authentication, where 

cultural and regulatory requirements demand reliable 

identification of pig-derived materials, the NIR-chemometrics 

synergy offers a fast, reproducible, and scalable solution that 

bridges scientific accuracy with real-world applicability. 

 

 

 

 
 

Figure 1. Workflow of NIR spectroscopy combined with chemometrics for 

leather authentication. 

 

III. MATERIALS AND METHOD 

A. Sample Preparation 

Leather specimens representing different sources were 

obtained from both commercial and educational suppliers. 

Pigskin samples were sourced from Saigon Leather Trading & 

Production Company Limited, Ho Chi Minh, Vietnam. 

Additionally, a PU leather specimen was obtained from a faux 

leather notebook provided by Kolej Komuniti Gerik, Perak, 

Malaysia. Notably, this PU material displayed a dotted 

triangular pattern resembling that of pigskin; however, its 

synthetic origin was formally verified by Jabatan Agama Islam 

Perak (JAIPk), Malaysia. 

Table 1 presents the identification code, leather type, and 

colour of each sample used in this study. To ensure consistency, 

all specimens were cut into squares measuring 3 cm × 3 cm and 

stored at ambient room temperature in sealed containers prior 

to analysis. The samples were examined without chemical or 

physical pre-treatment. For spectral acquisition, only the inner 

(flesh) surface of the leather was exposed, thereby avoiding 

potential interference from finishing or coatings typically 

applied to the grain (outer) surface of the material. 

During scanning, each 3 cm × 3 cm square was repositioned 

incrementally so that multiple points across the sample were 

interrogated. This approach was employed to capture 

representative spectra from the heterogeneous leather surface 

and minimize localized variability. The scanning protocol thus 

provided an unbiased spectral dataset suitable for subsequent 

chemometric analysis. 
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Table 1. List of leather samples and sampling 

 

Label Sample Type of leather Colour 

P7 Pig Suede Pig Gold bull 

P8 Pig Suede Pig Creamy Yellow 

PU1 Polyurethane Faux leather Light Brown 

PU2 Polyurethane Faux leather Light Brown 

 

 

 

 

B. Near Infrared (NIR) Spectroscopy Measurement  

Spectral acquisition was performed using a MicroNIR 

1700EC spectrometer (VIAVI Solutions Inc., Arizona, USA) 

in combination with proprietary MicroNIR software for data 

collection. The instrument operates within the Short-Wave 

Near-Infrared (SW-NIR) region, specifically spanning 950 to 

1650 nm, which corresponds to the first and second overtone 

regions of molecular vibrations. Note that this spectral window 

has been widely applied in food authentication, pharmaceutical 

analysis, and material characterization due to its sensitivity to 

functional groups such as O–H, C–H, and N–H overtones ([15] 

et al., 2023). 

The MicroNIR device is equipped with a tungsten–halogen 

light source, LVFs, and an InGaAs detector, enabling stable 

and high-resolution spectral acquisition. Prior to each 

measurement sequence, calibration was performed by 

acquiring dark scans (with lights off) and reference scans (with 

lights on against a certified white background). To ensure 

instrument stability, the light source was allowed to warm up 

for approximately 10 minutes, or until the internal temperature 

reached equilibrium. 

To minimize the influence of stray light and environmental 

variability, all measurements were conducted in a darkened 

enclosure, with the spectrometer placed inside a covered box 

during scanning. Each leather specimen was interrogated 

within the wavelength range of 950 to 1650 nm, and multiple 

scans were taken across different surface positions to ensure 

representative sampling. The spectral resolution of the 

instrument was 6.25 nm with an integration time of 10 ms per 

scan. The calibration protocol was repeated every few minutes 

of measurement to minimize drift associated with light source 

fluctuations. Concurrently, this scanning procedure yielded a 

robust spectral dataset, which was subsequently exported for 

chemometric modeling. All raw spectra were exported to 

Microsoft Excel for initial compilation and subsequently 

subjected to pre-processing and chemometric analysis. 

C. Chemometric techniques 

All chemometric analyses were conducted using The 

Unscrambler X version 10.4 (CAMO Software, Massachusetts, 

USA). Prior to multivariate modelling, the raw spectral data 

were subjected to standard pre-processing procedures, 

including spectral smoothing and derivatization, to reduce 

baseline shifts, correct scattering effects, and enhance 

resolution of overlapping absorption bands. Such pre-

processing is essential in NIR spectroscopy to minimize noise 

and highlight subtle chemical differences between samples [13] 

[17]. 

Two complementary chemometric strategies were employed. 

For exploratory analysis, an unsupervised PCA was applied to 

reduce data dimensionality and visualize inherent clustering 

patterns among pig leather and PU samples. In addition, PCA 

score plots enabled the evaluation of the variance structure and 

the identification of separation trends without prior class 

information. 

For classification, a supervised approach was implemented 

using PLS-DA in conjunction with pre-processed NIR data. 

PLS-DA is an extension of Partial Least Squares (PLS) 

regression adapted for classification tasks, and has since 

become a widely used supervised pattern-recognition method 

in chemometrics [18]. PLS-DA was preferred over classical 

Discriminant Analysis (DA) as it is better suited for high-

dimensional, collinear spectral datasets typical of NIR studies, 

while simultaneously maximizing inter-class variance and 

minimizing intra-class variance to provide robust 

discrimination between pig leather and PU leather. The 

performance of the supervised model was assessed through 

calibration and validation sets, with statistical parameters such 

as coefficient of determination (R²), Root Mean Square Error 

(RMSE), and classification accuracy employed to evaluate 

predictive reliability. 

This combined workflow ensured that unsupervised methods 

provided an unbiased overview of sample distribution, while 

supervised techniques delivered rigorous, quantitative 

classification. The supervised PLS-DA model, which achieved 

perfect classification accuracy in this study, also highlighted 

chemically meaningful discriminators. Meanwhile, regression 

coefficients indicated that amide bands near 1450 nm were 

critical for identifying collagen-rich pig leather, while CH 

combination bands characterized PU leather. This 

correspondence between spectral chemistry and classification 

outcome enhances confidence in the model’s interpretability. 

 

 

 

 

 

IV. RESULTS AND DISCUSSIONS 

A. Resulted NIR Spectra  

Figure 2 presents the resulting NIR spectra of pig leather and 

PU samples, illustrating distinct absorption profiles for both 

materials. The pig leather spectrum exhibits characteristic 

broad bands associated with protein and collagen structures, 

reflecting the presence of amide and N–H functional groups. In 

contrast, the PU spectrum demonstrates smoother, polymer-

related absorption patterns, primarily attributed to C–H and 

C=O overtones of synthetic PU. In essence, these observable 

spectral differences indicate inherent chemical and structural 

variations between natural and synthetic leathers, forming the 

foundation for subsequent chemometric analyses aimed at 

quantitative discrimination. 
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Figure 2. The resulting NIR spectra of pig leather and PU samples. Distinct 
spectral features are observed between the two materials, where pig leather 

shows protein- and collagen-related absorption bands, while PU exhibits 

polymeric C–H and C=O overtones. These variations highlight the inherent 

chemical differences that enable effective discrimination using chemometric 

analysis. 

 

Following the examination of the NIR spectra (Figure 2), PCA 

was performed to further explore the natural grouping patterns 

among the samples. 

 

 

 

B. Exploratory analysis using unsupervised techniques - 

Principal Component Analysis (PCA). 

PCA was employed as an unsupervised chemometric 

technique to explore the natural clustering of pig leather and 

PU leather samples. The PCA score plot (Figure 3) displays a 

clear separation between the two material groups along the first 

principal component (PC-1), which explains 96% of the total 

variance. The second principal component (PC-2), accounting 

for an additional 3% of the variance, contributed minimally to 

class separation yet confirmed the absence of overlap between 

sample categories. The distinct clustering suggests that the 

inherent spectral differences between pig leather and PU 

leather dominate the dataset, allowing reliable discrimination 

even without supervised classification. 

This separation can be attributed to the differences in 

chemical composition between collagen-based natural leather 

and polymeric PU leather. NIR spectroscopy captures overtone 

and combination bands of O–H, C–H, and N–H vibrations, 

which vary markedly between proteinaceous collagen fibres 

and synthetic PU chains [5][21]. The clustering of pig leather 

samples in one region of the PCA space and PU leather in 

another confirms that the major sources of variance are 

associated with their underlying structural and chemical 

differences. This is consistent with previous studies that 

applied PCA to leather authentication [2][12]. 

The dominance of PC-1 in explaining variance (96%) 

highlights that a single latent dimension is sufficient to capture 

the majority of the discriminatory information. This 

observation is consistent with the strong contrast reported in 

the literature between genuine and artificial leathers, as 

determined by vibrational spectroscopy [20]. Furthermore, the 

lack of overlap in the PCA scores indicates that exploratory 

unsupervised techniques alone can provide preliminary 

evidence for material authentication before applying 

supervised models, such as LDA or PLS-DA, for confirmatory 

classification. 

 

 

 
 

Figure 3. PCA score plot of pig leather (blue squares) and PU leather (orange 
circles). PC-1 (96% variance) clearly separates pig leather from PU leather, 

while PC-2 (3% variance) accounts for minor variation within. 

 

Overall, the PCA results demonstrate that unsupervised 

chemometric techniques can already reveal distinct grouping 

between pig leather and PU leather. This verifies the 

discriminatory potential of NIR data and justifies further 

application of supervised approaches for quantitative 

classification. Examination of PCA loading plots further 

confirmed that the primary discriminating variables 

corresponded to absorption features associated with collagen 

amide bonds in pig leather and aliphatic CH overtones in PU 

leather. Specifically, strong contributions were observed near 

1200–1500 nm, which are consistent with combination bands 

of N–H and C–H vibrations in collagen. The PU samples, in 

contrast, exhibited higher loadings in regions associated with 

CH₂ stretching overtones. Overall, these findings align with the 

established molecular differences between protein-based and 

polymeric materials and support the interpretation of PCA 

clustering patterns. 

 

 

 

 

 

C. Classification using supervised techniques – Partial Least 

Squares Discriminant Analysis (PLS-DA) 

The classification of pig leather and PU leather was 

successfully performed using PLS-DA as the supervised 

chemometric technique. Figure 4 illustrates the PLS-DA score 

plot, in which the two samples are distinctly separated along 

the Factor-1 axis. This indicates that the spectral features 

exploited by the classifier are sufficiently discriminative to 

differentiate leather (collagen-based) from leather-like PU 

materials. This observation is consistent with published work 

indicating that collagen’s amide bands (I, II, III) enable the 

reliable discrimination of authentic leather from synthetic 

alternatives using vibrational spectroscopy coupled with 

chemometrics [2][12].  
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Figure 4. A 2D score plot (Factor-1 vs Factor 2) for the developed PLS-DA 
model obtained for pig leather (blue square) and PU leather (orange circles). A 

clear separation between pig leather and PU leather is seen across Factor 1, 

which explains 98% and 99% of the variance in X and Y variables. 

 

 

The regression plot of predicted versus reference class 

values (Figure 5) demonstrates the accuracy of the supervised 

model: both calibration and validation yielded slopes near unity 

with high R² and low RMSE. In chemometric modelling, R² 

and RMSE, often assessed alongside cross-validation, are the 

canonical criteria for goodness-of-fit and predictive 

performance (Wold, Sjöström & Eriksson, 2001).  

 

 

 
 

Figure 5. Predicted versus reference class values for pig leather and PU leather 

using supervised chemometric modeling. Both calibration (blue) and validation 

(red) datasets yielded slopes close to unity, with R² values above 0.99 and low 

RMSE, indicating robust classification performance. 

 

 

Finally, the box plot of predicted Y-values for individual 

samples (Figure 6) highlights the classification stability: pig 

leather (A1–A8) clusters tightly around the positive class, 

while PU leather (B1–B8) is consistently assigned to the 

negative class, with minimal within-class dispersion. This 

behavior is expected for a well-separated two-group PLS-DA 

model [18].  

 

 
 

Figure 6. Box plot of predicted Y-values for each sample (A1–A8: pig leather; 
B1–B8: PU leather). The samples are clearly separated into their respective 

classes, with minimal variation within each group, confirming the reliability of 

the classification model. 

 

Collectively, these results demonstrate that supervised 

chemometric modelling, in particular PLS-DA applied to 

spectroscopic features, is a reliable approach for distinguishing 

pig leather from PU leather. This aligns with the broader 

literature on spectroscopic authentication of leather versus 

quantitative classifications [12][18]. The supervised PLS-DA 

model, which achieved perfect classification accuracy in this 

study, also highlighted chemically meaningful discriminators. 

Moreover, regression coefficients indicated that amide bands 

near 1450 nm were critical for identifying collagen-rich pig 

leather, while CH combination bands characterized PU leather. 

This correspondence between spectral chemistry and 

classification outcome enhances confidence in the model’s 

interpretability.  

Analysis of the regression coefficients revealed that the most 

influential spectral regions for classification were those 

associated with the amide bands of collagen, particularly near 

1450 nm, as well as the CH combination bands in the PU 

samples. These discriminating variables are chemically 

meaningful, demonstrating that the classification model was 

not only statistically accurate but also based on interpretable 

molecular features. Nevertheless, it should be noted that the 

dataset used in this study was relatively limited in size. 

Although the model achieved high classification accuracy, 

larger validation datasets incorporating different leather types, 

tanning methods, and surface finishes will be essential to 

confirm robustness under industrial conditions. 

 

 

 

IV. CONCLUSION 

This study demonstrated the successful application of 

chemometric techniques coupled with NIR spectroscopy to 

distinguish pig leather from PU leather. The unsupervised 

exploratory analysis using PCA revealed clear separation 

between the two material groups, with PC-1 explaining the 

majority of variance (96%). This highlights that the inherent 

chemical and structural differences between natural collagen-

based leather and synthetic PU dominate the spectral data. 

Building on this exploratory insight, supervised 

classification with PLS-DA achieved excellent calibration and 

validation performance (R² > 0.99, low RMSE), confirming its 

robustness, predictive power, and reproducibility. Together, 

PCA and PLS-DA formed a complementary workflow: PCA 
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offered exploratory insight into natural clustering, while PLS-

DA delivered rigorous quantitative confirmation of class 

separation. 

The findings of this study are consistent with prior research 

applying vibrational spectroscopy to leather authentication. [17] 

demonstrated the potential of NIR for bovine leather quality 

evaluation, while [13] applied hyperspectral imaging to 

differentiate natural and regenerated leathers. [12] indicated 

that FTIR-ATR could distinguish collagen-based materials 

from polymeric alternatives with high accuracy. The present 

work extends this literature by confirming that portable NIR 

devices, combined with chemometrics, are capable of 

achieving similarly reliable discrimination in pig versus PU 

leather, thereby broadening the scope of spectroscopic 

authentication into culturally and religiously sensitive domains. 

These results pose crucial industrial and regulatory 

implications. For the leather and textile sectors, rapid and non-

destructive authentication is critical to ensure product quality, 

combat fraudulent labeling, and maintain consumer confidence. 

In halal certification, in particular, the ability to accurately 

distinguish pig leather from synthetic alternatives provides 

regulatory bodies with a reliable and field-deployable tool for 

compliance monitoring. The combination of portable NIR 

spectroscopy and chemometric analysis, therefore, represents a 

practical solution for industries requiring routine 

authentication. 

Future research should expand the dataset to include 

additional leather species, various tanning techniques, and 

finished consumer products to further validate model 

robustness. The integration of advanced chemometric methods, 

such as SVMs, Random Forests, or DL algorithms, may further 

enhance performance. Ultimately, hybrid approaches that 

integrate NIR spectroscopy with complementary techniques, 

such as Raman or hyperspectral imaging, could offer a more 

comprehensive framework for leather authentication in real-

world applications. 
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