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Abstract— During the global pandemic of 2020, the Malaysian government implemented a Movement Control Order (MCO) as a 

mitigation plan to control the spreading of COVID-19. This effort demonstrates a significant decrease in active cases. However, it is 

disturbing the nation economically. The lack of a visualization hub to predict the spread of infectious diseases in Malaysia disrupts 

decision-makers’ efficiency in optimizing health sectors. Therefore, this paper aims to forecast infectious diseases in Malaysia using the 

Susceptible, Exposed, Infectious, Removed (SEIR) model. The SEIR Model predicts the projection of disease-spread cases based on the 

sample of previous cases. The samples used public health data from the COVID-19 Open Data Repository, which covers 12 states in 

Malaysia. The finding revealed that the SEIR model demonstrates a sharp decline in susceptible individuals after three months into 

2022, a peak in exposed and infectious individuals around the same time, and a steady rise in recovered individuals as most of the 

population becomes immune. This forecast data can provide earlier insights on the infection trend, allowing actionable 

recommendations for policymakers and healthcare. 
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I. INTRODUCTION 

A new coronavirus (2019-nCoV) emerged in Wuhan, China, 

in December 2019, spreading quickly and leading to a global 

pandemic [1]. COVID-19 symptoms range from mild issues 

like fever, dry cough, and fatigue to severe complications such 

as prolonged symptoms, pneumonia, organ failure, and death 

[2]. Accordingly, social quarantine, commonly called 

lockdowns and social distancing measures, has become a 

universal strategy for controlling the spread of COVID-19 

globally [3]. Correspondingly, Malaysian governments took 

the same approach to control the spread locally.  

During the second wave of COVID-19, Malaysia 

implemented a Movement Control Order (MCO) that consisted 

of three phases from March 2020 to May 2020. This brings the 

total strict lockdown period to eight weeks [4]. The order 

gradually slowed down after vaccination enforcement to 

achieve herd immunity, and citizens continued their usual 

routine as before the pandemic. 

MCOs evidently reduced the spread of COVID-19, 

prevented worst-case scenarios, and cooperated with the public 

and agencies. It also helped flatten the infection curve to 

stabilize health services during the pandemic [5].  
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However, MCO disadvantaged Malaysia’s economy, 

potentially leading to a decline and widespread unemployment. 

According to [6], the country lost approximately RM2.4 billion 

daily during the MCO period. By the end of April, the estimated 

loss was around RM63 billion and can reach a total of RM98 

billion if MCO is extended. Figure 1 showed Malaysian Gross 

Domestic Product (GDP) with a steep decline from quarter 4 of 

2019 to quarter 2 of 2020 – the duration of strict MCO [7]. This 

proves the indirect impact of the approach towards the 

Malaysian economy.  

While acknowledging that MCOs reduce infection risks, a 

more targeted control strategy would be more efficient. By 

focusing on high-risk areas and activities, human contact can 

be reduced significantly while allowing economic transactions 

to continue [8]. Therefore, it is essential to have a forecasting 

system that can identify critical areas, enabling efficient 

enforcement of control measures in the next targeted regions 

[9]. This approach mitigates the economic impacts of complete 

lockdowns and maintains public health by strategically limiting 

interactions in critical areas [8] - [9]. 

 

 
Figure 1. The graph shows that the Malaysian GDP (Gross Domestic Product) 
value declined from 2019 to 2020, indicating that quarantine does affect the 

national economy. Source: Department of Statistics Malaysia 

 

Therefore, this paper aims to suggest how the Susceptible, 

Exposed, Infectious, Removed (SEIR) model can be used to 

forecast infectious diseases using big data to improve 

surveillance and prevention. The study focuses on Malaysia, 

covering 12 states, and includes an in-depth analysis of 

COVID-19 data. Particularly, the goal is to provide 

comprehensive knowledge for improved disease management. 

 

II. RELATED WORKS 

Related works examine the current state of COVID-19 

forecasting systems in Malaysia and worldwide, highlighting 

the need to adapt the SEIR model to the Malaysian context. 

Several sophisticated forecasting systems have been 

developed in the United States to predict COVID-19 trends. 

One prominent example is the COVID-19 Forecast Hub [10], 

which integrates multiple models to produce comprehensive 

predictions. These models include mechanistic approaches like 

the SEIR model, which simulates the transmission dynamics of 

the disease. Additionally, statistical models such as 

AutoRegressive Integrated Moving Average (ARIMA) are 

employed to identify patterns in historical data and project 

future trends. Machine learning models, such as random forests 

and neural networks, improve forecasting accuracy by 

identifying complex, non-linear patterns within the data [11].  

Following the COVID-19 outbreak in Wuhan, the Chinese 

government and nongovernmental organizations proactively 

leveraged big data technology to prevent, contain, and manage 

the disease’s spread [12]. Meanwhile, in India, ARIMA models 

are employed to forecast future outbreaks [13], proving big data 

is useful for epidemiological surveillance. 

The model developed by [14] for predicting COVID-19 

outbreaks in Japan is a simple mathematical framework that 

utilizes machine learning techniques like regression analysis to 

analyze epidemic waves. The model demonstrated a significant 

periodicity of approximately 140 days in COVID-19 cases, 

achieving high accuracy in predicting [14]. A study by [15] 

presented two advanced machine learning models, Encoder-

Decoder long short-term memory (LSTM) and Attention 

LSTM, for forecasting COVID-19 infection rates in Russia.  

In contrast, Malaysia’s approach to COVID-19 forecasting 

has been more basic. Key data sources include the Ministry of 

Health Malaysia and local hospitals. However, these models 

often face limitations such as data quality issues and a lack of 

comprehensive integration of various forecasting techniques. 

For example, in [16], the model may not account for external 

factors such as changes in government policies, public 

behaviour, and healthcare capacity. This can influence the 

effectiveness of government intervention and the spread of the 

virus. The same goes for work in [17], which can only forecast 

daily cases in the short term.  

Considering these differences, there is a clear need to adapt 

the forecasting system [18] to be applied in Malaysia. Tailoring 

these advanced models to the local context can enhance its 

relevance and accuracy. Thus, incorporating Malaysian 

epidemiological, demographic, and socioeconomic data will 

allow for more precise predictions and better-informed public 

health interventions. Adaptation involves customizing model 

parameters to reflect local conditions and integrating local data 

sources into the forecasting system. 

A. Current Implementation of Ensembled Forecasting Model 

Ensemble forecasting models are widely employed in 

various fields to improve prediction accuracy, including 

infectious disease forecasting. This ensemble approach has 

been effectively used in the COVID-19 Forecast Hub [10] and 

FluSight Network [19]. Both are officially used as the main 

reference for disease forecasting in the United States.  

The COVID-19 Forecast Hub aggregates predictions from 

multiple models to comprehensively forecast COVID-19 trends, 

such as daily hospitalizations. Similarly, the FluSight Network 

employs ensemble forecasting models to predict influenza 

activity in the United States. The network combines forecasts 

from various models to improve the accuracy of predictions 

related to Influenza-Like Illness (ILI). 

 

 

III. METHODOLOGY 

This section outlines the implementation of a forecasting 

algorithm using the obtained data source and applying it to the 

SEIR model. 
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A. Proposed Method 

The proposed method involves the integration of SEIR   into 

the Malaysian context. This includes adjusting model 

parameters to reflect Malaysian demographics and 

epidemiological patterns and incorporating local data sources. 

Thus, we anticipate significant improvements in prediction 

accuracy and public health response. Adaptation also involves 

continuous model refinement and validation using historical 

Malaysian COVID-19 data. 

B. Data Source 

Relevant variables or attributes are crucial for the predictive 

model to function. Data collected is existing open-source data 

from Google COVID-19 Open Data Repository [20]. This site 

has a collective updated source of COVID-19 data, covering 

over 20,000 global locations and offers diverse data types and 

variables. Examples of collected data are presented in Table I, 

and Table II explains the function of each parameter. 

 

TABLE I. EXAMPLE OF COLLECTED DATA 

Date Confirmed Deceased Recovered Tested Hospitalized_Patients Population 

06/6/2021 6241 87 5133 86239 1460 32655400 

07/6/2021 5271 82 7548 80166 1380 32655400 

08/6/2021 5566 76 6962 94606 1350 32655400 

09/6/2021 6239 75 7386 105870 1269 32655400 

10/6/2021 5671 73 7325 101818 1306 32655400 

11/6/2021 6849 84 7749 96787 1303 32655400 

TABLE II. KEY PARAMETERS FOR THE FORECASTING MODELS 

Parameter Description  

confirmed 
 

Historical data on daily confirmed 
COVID-19 cases. 

deceased 

 

Historical data on daily confirmed 

deaths caused by COVID-19. 

recovered 

 

Historical data on daily recovered 

COVID-19 cases. 

tested Number of COVID-19 tests 

conducted daily. 

hospitalized_patients 

 

Number of people hospitalized due 

to COVID-19 

population Number of population 

 

C. Implementation of SEIR Model 

The implementation of the SEIR model involves simulating 

the spread of infectious diseases by dividing the population into 

four compartments—Susceptible, Exposed, Infectious, and 

Recovered [21]. This section outlines the key steps involved in 

adapting and applying the SEIR model to real-world 

epidemiological data. 

1) SIR Model (Susceptible-Infectious-Removed): The 

SIR model is a mathematical model used to describe the spread 

of infectious diseases [22]. [23] categorized people into three 

groups: susceptible, infected, and removed. In particular, 

susceptible individuals are healthy yet vulnerable to infection 

upon exposure to the virus. Meanwhile, infected individuals are 

those currently carrying and capable of transmitting the disease. 

Moreover, the removed group is those who have either 

recovered from the disease or died from it, with the assumption 

that they can no longer participate in the disease’s spread. The 

following set of differential equations are used to describe the 

model, according to [21]: 

𝑑𝑆

𝑑𝑡
= −𝛽𝑆𝐼

𝑑𝐼

𝑑𝑡
= 𝛽𝑆𝐼 − 𝛾𝐼 

𝑑𝑅

𝑑𝑡
= 𝛾𝐼

. (1) 

In Equation (1), (S) denotes the number of susceptible 

individuals, (I) the number of infected individuals, and (R) is 

the number of recovered individuals. The parameters beta (β) 

and gamma (γ) are constants representing the transmission rate 

and recovery rate, respectively. The population is expected to 

be constant, with (S + I + R = N), where (N) is the total 

population size. 

 
Figure 2. SIR (Susceptible-Infectious-Removed) Model 
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2) SEIR Model (Susceptible-Exposed-Infectious-

Removed): Considering various infectious illnesses’ incubation 

periods, susceptible individuals might not exhibit symptoms 

right after infection [21]. This model expands upon the SIR 

model by including an ‘Exposed’ category. This group consists 

of individuals exposed to the infection but are not yet 

symptomatic. It represents a phase where they could either 

recover without developing further symptoms or progress to 

become infectious. 

The SEIR model is described by the following differential 

equations: 

• Susceptible (S): 

𝑑𝑆

𝑑𝑡
= −𝛽

𝑆𝐼

population
. (2) 

In Equation (2), the transmission rate (β) has an impact 

on the negative rate of change of susceptible 

individuals, the number of susceptible individuals (S) 

and the number of infectious individuals (I). The term 

SI/population indicates the rate at which susceptible 

individuals are exposed to the virus [21]. 

• Exposed (E): 

𝑑𝐸

𝑑𝑡
= 𝛽

𝑆𝐼

population
− 𝜎 ∙ 𝐸. (3) 

Equation (3) indicates that the rate of change of 

exposed individuals is governed by the rate at which 

susceptible individuals become exposed and how 

exposed individuals transition to the infectious state. 

Here, the rate of progression from infectious exposure 

is denoted by (σ) [21]. 

• Infectious (I): 
𝑑𝐼

𝑑𝑡
= 𝜎 ∙ 𝐸 − 𝛾 ∙ 𝐼. (4) 

The rate of change of infectious individuals is 

determined by the progression from exposed to 

infected (σ⋅E) and the recovery of infected individuals 

(γ⋅I), as given in Equation (4) [21]. 

• Recovered (R): 
𝑑𝑅

𝑑𝑡
= 𝛾 ∙ 𝐼. (5) 

Equation (5) indicates that the rate of change of 

recovered individuals is directly proportional to the 

recovery rate (γ) and the number of infected 

individuals (I) [21]. 

 
Figure 1. SEIR (Susceptible-Exposed-Infectious-Removed) Model 

D. Model Algorithm 

This current section encompasses the development of the 

SEIR model in the R programming language. 

 

TABLE III. ALGORITHM 1: SEIR MODEL FUNCTION 

Algorithm 1: SEIR model function 

1.  Input: dataset, library (deSolve) 

2.  Output: dS, dE, dI, dR 
3.  Function SEIR_model(time, state, parameters): 

4.   Extract S, E, I, R FROM state 

5.  Extract β, γ, σ FROM parameters 
6.   Compute dS = -β* (S * I) / population 

7.   Compute dE = (β* (S * I) / population) - (σ* E) 

8.   Compute dI = (σ* E) - (γ* I) 
9.   Compute dR = γ* I 

10.  Return (dS, dE, dI, dR) 
 

 

IV. RESULTS 

The results section presents the key findings derived from 

the data analysis, highlighting the outcomes of the implemented 

methods. Accordingly, it systematically addresses the 

objectives outlined earlier in the study by focusing on 

interpreting the data trends and patterns relevant to the research 

questions. 

 

A. Findings 

 
Figure 4. Graph of daily confirmed COVID-19 cases in Malaysia from January 

2020 to December 2020 
 

Figure 4 depicts the daily confirmed COVID-19 cases in 

Malaysia from January to December 2020, illustrating 

fluctuating peaks and notable surges in cases. These sharp 

increases indicate key periods of accelerated virus transmission, 

likely associated with specific events or clusters that 

contributed to the spikes in infection rates. 
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Figure 5. Graph of daily recovered COVID-19 cases in Malaysia from January 

2020 to December 2020 
 

Figure 5 illustrates the daily recoveries from COVID-19 

during the same period, revealing a gradual upward trend. This 

trend reflects the healthcare system’s increasing capacity to 

manage and treat patients effectively. Over time, recoveries 

begin to align more closely with the number of confirmed cases. 

 

 
Figure 6. Graph of daily confirmed infected and recovered COVID-19 cases in 

Malaysia from January 2020 to December 2020 

 

Figure 6 compares daily confirmed infections with daily 

recoveries throughout 2020. This comparison highlights the 

delay between infection surges and subsequent recovery spikes, 

demonstrating how the healthcare system gradually adjusted to 

manage the rising cases. 
 

 
Figure 7. Graph of daily reported deaths due to COVID-19 in Malaysia from 
January 2020 to December 2020 

 

Figure 7 displays the daily reported COVID-19 deaths in 

Malaysia for 2020, highlighting the mortality trend. It suggests 

that severe outbreaks were followed by corresponding 

increases in the death toll, particularly during peak infection 

periods. Together, these numbers demonstrate Malaysia’s 

experience with the COVID-19 epidemic, illustrating trends in 

infections, recoveries, and fatalities. The data suggests that 

while infection spikes were significant, recovery rates 

improved, and death rates, though rising, were mitigated by 

public health interventions. 

 

 
Figure 8. Graph of daily confirmed COVID-19 cases in Malaysia from January 

2021 to December 2021 

 

Figure 8 depicts the daily confirmed COVID-19 cases in 

Malaysia from January to December 2021. In comparison to the 

previous year, there are significant surges in cases, particularly 

in mid-2021, suggesting new waves of the pandemic. These 

increases may be attributed to the emergence of new variants or 

reduced adherence to public health restrictions, resulting in 

larger outbreaks than in 2020. 

 

 
Figure 9. Graph of daily recovered COVID-19 cases in Malaysia from January 

2021 to December 2021 

 

Figure 9 displays the daily recovered COVID-19 cases over 

the same period (January to December 2021). The data reflects 

an upward trend in recoveries, mirroring the rise in confirmed 

cases, indicating that the healthcare system further adapted to 

the increasing number of infections. Recovery peaks follow 

major infection surges, demonstrating a delayed yet consistent 

response in patient recovery. 
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Figure 10. Graph of daily confirmed infected and recovered COVID-19 cases 

in Malaysia from January 2021 to December 2021 

 

Figure 10 compares daily confirmed infections with daily 

recoveries for 2021. The gap between confirmed cases and 

recoveries is most pronounced during the mid-year spike. 

Notably, new infections outpaced recoveries, suggesting a 

period of heightened strain on the healthcare system, 

potentially leading to delays in patient recovery or increased 

hospital burden. 

 

 
Figure 11. Graph of daily reported deaths due to COVID-19 in Malaysia from 

January 2021 to December 2021 

 

Figure 11 illustrates the daily reported COVID-19 deaths 

from January to December 2021. The death toll rises in tandem 

with confirmed cases, particularly during the significant 

infection surges, emphasizing the heightened severity of the 

pandemic in 2021. The increased mortality, compared to the 

previous year, likely reflects the higher number of infections 

and the growing strain on the healthcare system. 

In summary, these figures for 2021 depict a more severe 

phase of the pandemic compared to 2020, with higher peaks in 

confirmed cases, recoveries, and deaths. The data indicates that 

while the healthcare system managed to facilitate patient 

recovery, the larger infection spikes, especially in mid-2021, 

were associated with a significant rise in mortality. This 

underscores the ongoing challenges posed by the pandemic and 

the strain placed on Malaysia’s public health infrastructure. 

 

 
Figure 12. Graph of daily confirmed COVID-19 cases in Malaysia from 
January 2022 to September 2022 

 

Figure 12 depicts Malaysia’s daily confirmed COVID-19 

cases from January to September 2022. This data reveals a 

substantial reduction in daily cases compared to previous years, 

suggesting enhanced control over the pandemic during this 

period. The observed decrease may be attributed to extensive 

vaccination coverage, improved public health interventions, or 

a reduction in viral transmission due to the accumulation of 

natural immunity within the population. 

 

 
Figure 13. Graph of daily recovered COVID-19 cases in Malaysia from January 

2022 to September 2022 

 

Figure 13 presents the daily number of COVID-19 

recoveries for the same timeframe (January to September 2022). 

The data indicate a general decline in recoveries, corresponding 

to the reduction in confirmed cases. This trend suggests that as 

the incidence of infections decreases, the demand for recoveries 

correspondingly diminishes, reflecting a positive impact on the 

healthcare system. 
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Figure 14. Graph of daily confirmed infected and recovered COVID-19 cases 

in Malaysia from January 2022 to September 2022 

 

Figure 14 compares the daily confirmed cases with daily 

recoveries in 2022. The alignment between these two metrics is 

noticeably closer than in previous years, suggesting that the 

healthcare system was better equipped and not overwhelmed. 

The synchronization of recovery rates with infection rates 

demonstrates improved management of patient care and 

recovery processes during this phase of the pandemic. 

 

 
Figure 15. Graph of daily reported deaths due to COVID-19 in Malaysia from 

January 2022 to September 2022 

 

Figure 15 illustrates the daily reported COVID-19 deaths in 

Malaysia from January to September 2022. There is a marked 

decrease in mortality compared to earlier periods, indicating the 

effectiveness of vaccination campaigns, advancements in 

treatment protocols, and enhanced public health measures. The 

reduction in death rates in 2022 signifies a notable 

improvement in the country’s capacity to mitigate the 

pandemic’s health impacts. 

The 2022 data indicate a significant advancement in 

controlling COVID-19 in Malaysia. The declines in confirmed 

cases, recoveries, and deaths highlight the success of public 

health strategies, vaccination initiatives, and natural immunity. 

Compared to 2020 and 2021, the situation in 2022 is 

characterized by greater stability, fewer severe outbreaks, and 

a healthcare system that is more adept at managing the disease’s 

effects. 

 

 

 

B. Prediction Graph Analysis 

 
Figure 16. Forecast result of Malaysian COVID-19 data from January 2020 to 
September 2022 for a maximum of 32655400 population for 991 days 

 

Figure 16 consists of the X-axis and Y-axis, where the X-

axis (Time in Days) represents the temporal progression of the 

simulation, measured in days. It reflects the duration over 

which the SEIR model is simulated, providing a chronological 

framework for observing the dynamics of the disease. 

Meanwhile, the Y-axis (Number of Individuals) presents the 

number of people in each SEIR model element. The values for 

the X-axis are scaled by (1 ×10^5) to facilitate a more precise 

representation of the data and to accommodate the typically 

large numbers involved in such epidemiological models. 

Susceptible (Orange Line). This line begins at a high value 

and exhibits a downward trajectory over time. The decreasing 

trend signifies a reduction in the number of individuals who 

remain prone to the disease as the outbreak progresses and as 

more individuals transition to the exposed or infectious 

compartments. 

Exposed (Blue Line): Initially, this line displays an upward 

trend, reflecting the increasing number of individuals exposed 

to the disease. The line reaches a peak, indicating the maximum 

number of exposed individuals, and subsequently declines as 

these individuals advance to the infectious state. 

Infectious (Red Line): This line demonstrates a pronounced 

increase, reaching a peak at the point of maximum disease 

prevalence. The subsequent decline in the line represents the 

decrease in the number of infectious individuals as they recover 

and move to the recovered group. 

Recovered (Green Line): The green line represents a 

continuous upward trend, representing the accumulation of 

individuals who have recovered from the disease. This 

increasing trend reflects the ongoing transition of individuals 

from the infectious state to the recovered state, indicating a 

growing number of individuals who are no longer inclined to 

the disease. 

In the early phases of the outbreak, according to Figure 16, 

the proportion of susceptible individuals is notably high, while 

the counts of exposed and infectious individuals are relatively 

low, as displayed in Figure 6. This phase reflects the pre-

epidemic state (year 2020, Figures 4 –7), where the disease has 

not yet been significantly disseminated. 

As the epidemic progresses, there is an apparent increase in 

the number of exposed individuals, leading to a rise in 

infectious cases, as illustrated in Figure 8. The curve 

representing infectious individuals exhibits a sharp peak, 

indicative of a rapid escalation in disease transmission and 

prevalence during this period (2021, Figures 8 – 11). 
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Over time, the number of recovered individuals steadily 

increases, reflecting the accumulation of individuals who have 

successfully overcome the disease. This is proven by the 

decreasing number of new confirmed cases, as portrayed in 

Figure 12. Concurrently, there is a corresponding decline in the 

susceptible population as these individuals transition to the 

recovered state. 

The system eventually approaches a state of equilibrium 

characterized by a stabilization in the number of susceptible 

people. Most people are either fully recovered or still exposed 

and contagious at this juncture. 

According to Figure 16, at the start of the epidemic (Day 0), 

nearly the entire population is susceptible (blue line). This is 

consistent with real-world scenarios where, at the onset of a 

new outbreak, most individuals are unexposed to the pathogen. 

As time progresses, the exposed population (orange line) 

increases, reflecting a rising number of infected people who are 

not yet infectious. This could correspond to the initial phase of 

the pandemic when awareness is low and containment 

measures have not yet been fully implemented. 

The infectious population (red line) sharply rises following 

the exposed population, reaching a peak around Day 100. This 

peak signifies the point at which the disease is most prevalent, 

with the highest number of active infectious individuals in the 

population. This represents a critical period during which 

hospitals are likely overwhelmed by the surge in cases, 

particularly if interventions such as MCOs or vaccination 

campaigns have not yet been fully effective. 

The peak of infection is followed by a rapid decline as more 

individuals recover and move into the recovered compartment 

(green line). This reduction indicates that immunity is building 

up in the population through natural recovery or medical 

interventions such as vaccinations. 

By around Day 200 to Day 300, the model reveals a 

stabilization in the susceptible population, with the majority of 

individuals either recovered or immune. This likely reflects the 

achievement of herd immunity, where sufficient proportions of 

the population have gained immunity, either through recovery 

or vaccination, such that the virus can no longer spread easily. 

This equilibrium state, marked by a low number of susceptible 

individuals and minimal new infections, highlights the long-

term impact of sustained public health interventions in 

Malaysia. However, it also underscores the need for continued 

surveillance and possible booster vaccinations to prevent future 

outbreaks and maintain control over the disease. 

 

V. CONCLUSION 

The study emphasizes how vital SEIR analytics is in 

improving the management and forecasting of infectious 

diseases. Utilizing information from Google’s COVID-19 

Open Data Repository, the research offers a strong foundation 

for forecasting the spread of illness and guiding public health 

initiatives. The SEIR model highlights critical trends that help 

public health forecast decision-making in selecting a specific 

duration of control order and targeting the most vulnerable area. 

 A sharp decline in the susceptible population in the second 

quarter of 2022 indicates when a large portion has been exposed 

or vaccinated, guiding the timing of mass vaccination 

campaigns or stricter health measures. The alignment of the 

infectious peak with the exposed population peak marks a 

crucial period for healthcare capacity planning, allowing 

policymakers to allocate resources like hospital beds and 

medical staff efficiently. Additionally, the recovery curve 

demonstrates how swiftly individuals recover compared to new 

infections, helping leaders determine when to relax restrictions 

or reduce emergency measures as recovery rates surpass  

To ensure thorough readiness for future outbreaks, further 

work should improve predicting accuracy by broadening the 

data coverage to include additional factors such as vaccination 

rate and control order. 
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