
MJoSHT Vol. 11, No. 1 (2025)  78 

 

                                                                                                  
[mjosht.usim.edu.my] 

 
Article 

Novel Approaches to Plastic Pollution: Leveraging Machine Learning 

and Metaproteomics for Advanced Plastic Degradation 

 

Arooj Fatima Tul Zahra1, Mujahid Tabassum2 and Sundresan Perumal3 

1Faculty of Engineering, Computing and Science, Swinburne University of Technology Sarawak, 

Kuching, Malaysia. 

2Department of Computing and Mathematics, South East Technological University, Waterford, 

X91 K0EK, Ireland. 

3Faculty of Science and Technology, Universiti Sains Islam Malaysia, 71800, Nilai, Negeri 

Sembilan, Malaysia. 

 

Correspondence should be addressed to:  

Arooj Fatima Tul Zahra; aroojftz@gmail.com 

Article Info 

Article history: 

Received:13 November 2024 

Accepted: 20 January 2025 

Published: 19 February 2025 

Academic Editor:  

Muhammad Safwan Ibrahim 

Malaysian Journal of Science, Health 

& Technology 

MJoSHT2025, Volume 11, Issue No. 1 

eISSN: 2601-0003 

https://doi.org/10.33102/mjosht.v11i1.451  

Copyright © 2025 Arooj Fatima Tul 

Zahra et al. This is an open access 

article distributed under the Creative 

Commons Attribution 4.0 International 

License, which permits unrestricted use, 

distribution, and reproduction in any 

medium, provided the original work is 

properly cited.

 

 

 
Abstract— This study addresses a pressing global issue—plastic waste—and explores technologies such as machine learning and 

metaproteomics as potential solutions. Current initiatives to reduce, recycle, and dispose of plastics in landfills are inadequate; plastic 

pollution is an issue that affects various ecosystems globally. This paper proposes a prospective solution that leverages machine learning 

algorithms and metaproteomics to improve the efficiency of plastic degradation. The prediction of environmental factors that facilitate 

bacteria-induced plastic degradation is performed using Random Forests and Convolutional Neural Networks (CNNs) models on 

extensive datasets. This enables the identification of specific microbes and enzymes capable of degrading plastics and other substances, 

including PETase, which acts on polyethylene terephthalate. Metaproteomics enhances this process by elucidating the proteins 

produced by microorganisms, thereby facilitating the identification of enzymes involved in plastic degradation. The amalgamation of 

these technologies facilitates the ongoing monitoring and regulation of degradation conditions, thereby improving scalability and 

performance metrics. Furthermore, the paper examines additional emerging technological innovations, including machine learning, 

nanotechnology, artificial intelligence, and robotics, that contribute to enhancing the degradation process and the comprehensive 

management of plastic waste. Collectively, these concepts have the potential to establish a circular economy where plastic waste is 

considered a valuable resource rather than waste. In conclusion, the integration of machine learning with metaproteomics presents a 

compelling narrative to tackle plastic pollution. These technologies improve the efficiency and ecological sustainability of plastic 

degradation processes, establishing a future in which humanity repurposes plastic waste as a valuable resource in industrial applications 

rather than discarding it. 
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I. INTRODUCTION 

A. Overview of Global Plastic Pollution Crisis 

Plastic pollution is one of the most pressing environmental 

challenges of the 21st century. [1]. Over 300 million metric tons 

of plastic are produced every year, a great proportion of which 

ends up in the natural environment, posing a serious threat to 

terrestrial and marine ecosystems [2]. Analogous to the effects 

of arsenic contamination on water, soil, and food in severely 

affected areas such as Alampur Village [3], plastic pollution 
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presents a complex environmental hazard, particularly 

influencing terrestrial and aquatic ecosystems. The very 

durability that makes plastics so useful also ensures their place 

as a persistent pollutant; they can take hundreds of years to 

break down. Most plastics degrade into microplastics, which 

have now invaded almost every part of the Earth—from deep 

oceans to polar ice caps [4]. The environmental influence of 

plastic pollution is multi-faceted: it constitutes a high risk to the 

organisms, such as fish, seabirds, and marine mammals found 

in marine systems, who often ingest or get tangled up in plastic 

litter. Particularly, it interferes with terrestrial soil ecosystems, 

inhibits plant growth, and leaches toxic chemicals that may 

contaminate water supplies [5]. It poses a threat to biodiversity 

and human health by introducing microplastics into the food 

chain through seafood and other contaminated sources. 

Considering the extent and difficulty of plastic pollution, the 

conventional options for waste management—recycling and 

landfilling—cannot tackle the problem. Global recycling rates 

are low, and many plastics are too expensive to be recycled or 

economically non-viable [2]. Thus, there is an urgent need for 

novel ideas, among other things, from highly interdisciplinary 

perspectives that could more effectively help reduce plastic 

waste and further improve sustainability [6]. 

B. Scope of the Review 

The review discusses the inclusion of machine learning and 

metaproteomics for plastic degradation as advanced 

technological methodologies. Traditional techniques related to 

plastic waste management have enjoyed limited success, with 

problems regarding scalability, besides inefficiency in sorting 

and processing different types of waste [7]. With the latest 

developments, it has emerged that machine learning and 

metaproteomics are promising alternatives to these traditional 

techniques [8]. Metaproteomics enables in-depth studies of 

proteins produced by microbial communities in ecosystems 

affected by plastic waste. This becomes important in the 

identification of enzymes that are involved in the degradation 

of plastics like PET at a molecular level. Machine learning 

extends metaproteomics by analyzing huge datasets for the 

prediction of optimal conditions for microbial degradation and 

identifying which enzymes are most effective at degrading 

plastics [9]. This combination of technologies accelerates 

degradation processes and enables real-time monitoring and 

forecasting of plastic pollution trends [10]. 

This review will highlight how these emerging technologies 

can be leveraged to effectively and sustainably combat plastic 

pollution. In particular, the goal is to explain in detail how 

machine learning and metaproteomics would enhance the 

scalability and efficiency of the strategies adopted for 

managing plastic waste. This review discusses how such 

integrated technologies could furthermore drive environmental 

sustainability through the facilitation of a circular economy 

whereby plastic waste will be kept under control and 

transformed into something rather valuable. This review gives 

a progressive outlook into the integration of machine learning 

and metaproteomics in an integrated approach toward 

mitigating plastic pollution as an effort to improve global 

environmental health. 

 

II. CURRENT TECHNOLOGICAL ADVANCES IN 

PLASTIC WASTE MANAGEMENT 

A. Nanotechnology in Plastic Degradation 

Nanotechnology has emerged as an efficient means of 

dealing with the menace of plastic through the acceleration of 

degrading polymeric substances [11]. In catalyzing plastic 

degradation, mainly photoreactive mechanisms are involved, 

and thereby, nanoparticles like TiO₂ and AgNPs show 

tremendous potential in this respect [12]. When there is any 

exposure to light, nanoparticles generate ROS, which degrades 

the chemical bonds in plastic polymers into smaller molecules. 

Subsequently, this promotes the better degradation of plastics 

such as polyethylene terephthalate and limits the generation of 

microplastics that are very harmful to environmental exposure 

in the long term [13].  

In addition to accelerating degradation, nanotechnology 

offers a scalable method for plastic waste reduction on both 

land and in marine ecosystems [14]. Nanoparticles such as TiO₂ 

have been highly effective in photocatalytic sunlight-driven 

degradation; hence, the process is energy-efficient. 

Nanotechnology can deplete plastics to smaller-sized, less-

harmful compounds [15]. Moreover, it encourages the 

recycling or reprocessing of the material for reuse into biofuels 

and other end-products, which are worth more value [16]. It is 

in this cyclic approach that the creation of the circular economy, 

characterization of reutilization versus the disposal of the 

wastes, gets developed.  

The application of nanotechnology in plastic waste 

management offers a precise solution for microplastic pollution, 

which is a common and problematic aspect of plastic waste. 

Nanotechnology reduces the release of microplastics into the 

environment by degrading plastics into constituent molecules. 

Current nanotechnology development offers a scalable, energy-

efficient, and efficient method for plastic degradation that can 

be targeted for both macro and microplastic pollution at its 

source [17]. 

B. Artificial Intelligence and Robotics in Waste Management 

Artificial intelligence and robotics have revolutionized 

waste management by providing advanced tools to identify, 

classify, and remove plastic waste in real-time [18]. ML and 

DL models play a very important role in the identification and 

classification of plastic waste in an ecosystem, whether in 

oceans, rivers, or landfills [19]. These models use large datasets 

to train algorithms that accurately detect and sort plastic waste 

based on shape, size, and material composition [20]. An 

example is the deployment of CNNs in the qualification of 

plastic debris to clean aquatic environments [21].  

Another powerful application of AI in plastic waste 

management has to do with its ability to bolster waste sorting 

and collection processes [22]. Intelligent robotics, fitted with 

sensors and machine vision systems, is able to sort different 

types of plastic materials automatically [23]. It saves labour 

person-hours and enhances efficiency in waste handling with 

increased precision [24]. Robotic systems, guided by AI 

algorithms, can easily differentiate between types of plastics—

even when merged with other materials—and sort them out for 

recycling or landfills. This level of automation significantly 

improves the effectiveness and efficiency of waste 
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management processes, particularly within an industrial setup 

where volumes of plastic waste are huge [25].  

Equally important is that AI-powered systems can track 

down elusive microplastics that might be missed through 

conventional means of managing waste [19]. AI models use 

high-level imagery and analysis of environmental data to map 

the current distribution of plastic pollution, a factor beneficial 

to oversight and policy formulation on the environment [22]. 

Such data-informed insights enable governments and 

organizations to target specific hotspots of pollution and 

implement effective remediation more efficiently [26]. 

The role of AI in enhancing the efficiency and accuracy of 

plastic detection is paramount [20]. AI models can 

continuously learn and adapt to new and emerging patterns in 

any given waste stream, therefore enhancing their ability to 

identify types of plastic pollution previously unknown [27]. 

This flexibility is necessary not only when new types of plastic 

enter the market but also when the nature of plastic waste itself 

changes over time. Since this area involves AI and robotics 

within waste management systems, it could enable a more 

sustainable and efficient method to handle plastic pollution and 

reduce its impact on the environment [28]. 

 

III. MACHINE LEARNING IN PLASTIC DEGRADATION  

A. Artificial Intelligence in Machine Learning Algorithms for 

Enhancing Plastic Decomposition 

Machine learning (ML) has been shown to be a key tool in 

improving the plastic degradation processes[29]. In this field, 

Random Forest (RF), Support Vector Machines (SVM), and 

Convolutional Neural Networks (CNNs) represent the most 

powerful algorithms, each contributing unique advantages to 

predict optimal conditions for plastic degradation [29], [30]. 

The primary aim of these models is to examine, using broad 

data sets comprising a variety of environmental and biological 

dimensions, the most effective routes of degradation for 

different types of plastic waste [31].  

Modelling with Random Forest has demonstrated great 

potential for the analysis of the complicated links between 

plastic types, their respective degradation rates, and microbial 

activity [32]. This model's capability to engage in parallel 

processing of multiple variables makes it capable of forecasting 

the effects of a number of factors—like temperature, pH, and 

microbial concentrations—on the weakening of plastics such as 

polyethylene terephthalate (PET) [33]. Known for their 

accuracy in classification jobs, SVM models are fit for 

identifying the conditions that promote thorough plastic 

degradation [32]. The models are particularly proficient at 

finding the detailed differences among plastic types and how 

they behave under microbial or enzymatic treatment [31].  

CNNs, mainly related to image processing areas, have 

additionally been applied to plastic degradation [34]. 

Convolutional Neural Networks (CNNs) are teachable for 

investigating microscopic images of plastics in decline, 

recognizing molecular structural shifts that help predict the 

degradation process [35]. A microbial consortium subjected 

plastics to this technology, with CNN models, applied to assess 

the efficiency of degradation changes over time[32].  

Machine learning's capacity to process and analyze extensive 

datasets enables it to provide scalable solutions for plastic 

degradation [29]. Continuous evaluation of data generated from 

degradation experiments enables machine learning models to 

enhance their predictive precision, thereby increasing the 

efficiency of degradation processes over time [36]. 

Adaptability is crucial in this context, especially as new 

biodegradable plastics are developed, and environmental 

conditions evolve [37]. To enhance plastic degradation in 

practical environments, these algorithms are essential, tackling 

the inefficiencies typically associated with conventional waste 

management systems [38]. 

 B. Predictive Models for Plastic Degrading Microorganisms 

and Enzymes 

Finding microorganisms that can disintegrate plastic has 

historically been a demanding responsibility [39]. Machine 

learning has transformed this task by enabling the rapid 

identification of microbes and enzymes capable of breaking 

down plastic from extensive environmental datasets [40]. 

Analysis conducted by machine learning models on genetic, 

environmental, and enzymatic information reveals which 

microorganisms are adept at breaking down a variety of plastics, 

helping to reduce the time and resources involved in locating 

these essential microorganisms [40]. Machine learning plays a 

key role in forecasting plastic-degrading microbial consortia, 

which is a vital application within this area [41]. Analyses of 

key datasets have shown researchers to have leveraged 

algorithms with Random Forest and Decision Trees, illustrating 

the key microbial species and enzymes that play a role in plastic 

degradation. The findings of Hemalatha et al. (2021) reveal that 

with 99% accuracy, machine-learning models significantly 

improved the efficiency of this usual experimentation method 

for plastic-degrading microbial identification. Such models 

grant scientists the ability to estimate how enzymes like PETase 

and MHETase will work, which is important for the process of 

breaking down PET plastics into monomers that are smaller and 

reusable [8].  

In addition, machine learning has proven crucial in revealing 

the collaborative systems of a wide range of microbial 

communities related to plastic degradation (Purohit et al., 2020). 

The examination of metagenomic and metaproteomic 

information via machine learning models reveals the 

complicated relationships between microbes and their 

environment, allowing for the development of customized 

microbial consortia for unique categories of plastic waste [43]. 

Purohit et al. (2020) presented this methodology, showing that 

machine learning allowed the prediction of microbial 

community architectures and their related enzymatic activities 

in ecosystems that break down plastic materials. These 

predictive models accelerate the discovery of plastic-degrading 

microorganisms and reveal how environmental conditions 

influence microbial behavior [42]. Then, the information has 

the potential to enhance microbial breakdown environments by 

modifying pH, nutrient availability, or temperatures to improve 

plastic breakdown. As machine learning models progress, they 

are likely to be more crucial to the development of microbial 

solutions related to plastic pollution [44].  

In essence, machine learning has innovated the approaches 

utilized by researchers analyzing plastic degradation. Machine 

learning models deliver the necessary instruments for 

projecting the optimal conditions for degradation and 

discovering microbial and enzymatic factors that play a role in 
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the degradation process, thereby streamlining the design of 

scalable and efficient plastic waste solutions. These tools 

improve the performance and accuracy of current waste 

management efforts and forge a roadmap toward more 

sustainable and earth-friendly practices in the coming years. 

 

IV. METAPROTEOMICS: UNLOCKING MICROBIAL 

MECHANISMS FOR PLASTIC DEGRADATION 

Metaproteomics facilitates the study of microbial 

community changes in response to differing environmental 

conditions and the effect of these modifications on plastic 

degradation. This dynamic understanding of microbial 

interactions provides a more effective strategy for addressing 

plastic pollution, particularly compared to traditional methods 

that focus on specific microbial species or enzymes. 

A. Integration of Metaproteomics with Specialized 

Technologies 

The quality of metaproteomics greatly benefits from 

innovative technologies like artificial intelligence (AI) 

alongside bioinformatics. These technologies support prompt 

data handling from a large number of environmental samples 

through high-throughput analysis. Training models of artificial 

intelligence to search for patterns in metaproteomic data 

permits us to predict the optimal microbial communities and 

enzymes that break down specific types of plastics. In contrast, 

bioinformatics expands metaproteomics by delivering tools for 

the analysis of data from microbial communities at both the 

genomic and proteomic levels [45]. By melding genomic, 

transcriptomic, and proteomic data, bioinformatics can 

generate a detailed understanding of the pathways related to 

plastic degradation. This combination increases our ability to 

pinpoint essential enzymes, like PETase, that are active and 

expressed in the plastic degradation process under special 

environmental conditions [46].  

A major case study highlighting the success of merging 

metaproteomics with these technologies involved identifying a 

microbial consortium skilled in the effective breakdown of PET 

in marine ecosystems [47]. The results from the metaproteomic 

analysis show that a variety of enzymes, such as PETase, show 

heightened degradation activity when exposed to sunlight and 

particular environmental conditions [48]. This exploration 

shows that, in combination with intricate computational 

methodologies, metaproteomics can uncover unknown 

pathways of plastic degradation, potentially giving rise to more 

effective and scalable solutions [49]. 

B. Application in Industrial Plastic Waste Management 

The application of metaproteomics transcends laboratory 

work; it shows great promise for the industrial-scale 

management of plastic waste [50]. In-depth waste management 

strategies can apply metaproteomics to identify the superior 

microbial consortia for a variety of plastic types, improving 

biodegradation [51]. Managing mixed plastic waste in 

industrial operations requires understanding microbial 

interactions and identifying optimal enzymes for degradation 

[52]. Metaproteomics offers a means to perform real-time 

monitoring and optimization of microbial communities so as to 

achieve ideal biodegradation conditions [53]. This is especially 

useful in bioreactors, where microbial processes reprocess 

plastic waste. Through regular analysis of proteomic data 

coming from these bioreactors, businesses can modify 

environmental conditions to improve degradation rates, hence 

preserving efficiency and cost-effectiveness [54].  

In addition to making operations more efficient, 

metaproteomics can facilitate bioengineering efforts that are 

directed at building more robust microbial consortia [55]. The 

capacity to alter microbial strains to raise their degradation 

efficiency comes from bioengineers who can recognize the 

essential proteins and enzymes involved in plastic degradation 

[56]. This method supports the development of specialized 

microbial communities designed to effectively handle specific 

kinds of plastic waste, thereby ameliorating the ecological 

effects of massive industrial waste plastic disposal. The 

progress made in metaproteomics might change the way we 

manage industrial plastic waste and effectively respond to 

plastic pollution [57]. Metaproteomics yields an extensive 

understanding of microbial and enzymatic dynamics, 

supporting a more precise and successful strategy for 

biodegradation and enabling large-scale practices to be both 

feasible and sustainable [58]. 

 

V. THE CONVERGENCE OF MACHINE LEARNING AND 

METAPROTEOMICS IN PLASTIC DEGRADATION 

A. Integration for Enhancing Plastic Degradation 

Integrating machine learning (ML) and metaproteomics 

forms a strong and novel solution for accelerating plastic 

breakdown [59]. Metaproteomics furnishes complete insights 

into the proteins and enzymes produced by microbial 

communities in areas polluted with plastic. In parallel, machine 

learning is using this data to forecast and boost beneficial 

conditions for biodegradation [60]. Combining metaproteomic 

data into machine learning models allows researchers to detect 

concealed patterns and correlations that influence plastic 

degradation processes [61].  

Processing extensive metaproteomic data enables algorithms 

that use machine learning, especially Random Forest and 

Support Vector Machines (SVM), to identify those microbial 

strains and enzymes that are best suited to the breakdown of 

numerous plastics [62]. This combination allows researchers to 

design adaptive degradation systems. These systems are 

capable of altering degradation parameters in real-time by 

ultimately entering real-time results from metaproteomic 

analyses into machine learning models to keep conditions 

optimal. This is again important in situations where changing 

variables that include temperature, pH, and nutrient availability 

influence the performance of microbial degradation. 

Combining metaproteomics and machine learning supports a 

more responsive and efficient strategy, markedly hastening 

plastic degradation and lessening microplastic accumulation 

[60]. 

 

VI. FUTURE DIRECTIONS AND INNOVATIONS 

A. Advancements in Plastic Waste Degradation Technologies 

The growing world's need for sustainable approaches to 

plastic waste is driving the study of next-generation 

technologies to improve how plastic degradation works [63]. 
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Similar to how renewable energy can be sustainably generated 

from palm oil waste, emerging plastic waste management 

technologies aim to transform waste into valuable resources 

within a circular economy [64]. The combination of quantum 

computing with machine learning along with metaproteomics 

shows much promise [65]. Quantum computing enables the 

rapid and precise analysis of complex datasets, facilitating the 

discovery of optimal plastic degradation pathways [56]. The 

combination of quantum algorithms and machine learning can 

process extended metaproteomic data to expose complicated 

interactions among microbial communities and the 

environmental elements affecting plastic degradation [42].  

At the same time, improvement in synthetic biology is 

opening novel prospects in the field of plastic biodegradation. 

Synthetic biology supports genetic modifications of microbial 

strains for better plastic decomposition [44]. Synthetic biology, 

together with metaproteomics, can hasten plastic degradation 

by designing microbial communities tailored for different 

plastic kinds [66]. Engaging with bioengineered 

microorganisms, which yield advanced enzymes such as 

PETase, might greatly help modern industries by providing 

accuracy and capability to manage the plastic waste problem 

[67]. What is more, robotics powered by artificial intelligence 

(AI) are ready to change the collection and management of 

plastic waste [68]. Advanced machine learning algorithms 

enable robots to look for, sort, and get rid of plastic waste from 

ecosystems situated on land and in the ocean [69]. Advanced 

AI systems, in combination with computer vision technology, 

permit real-time classification and identification of multiple 

plastic types, thus improving waste collection effectiveness and 

lowering the involvement of humans [70]. The automation of 

these processes is causing a quicker speed of plastic collection 

alongside an uptick in sorting precision while cutting down on 

contamination in recycling streams [29]. 

B. Policy and Industry Implementation of Advanced Plastic 

Degradation Technologies 

The complete realization of innovative plastic degradation 

technologies requires a partnership between the public and 

private sectors to facilitate widespread acceptance [71]. 

Creating policies that will enhance the role of AI and 

biotechnology in handling plastic waste requires the 

collaboration of government agencies, business leaders, and 

environmentalists. This indicates that we need to deliver 

custom financing for research and development, as well as 

incentivize taxation for companies embracing sustainability 

[72]. At the same time, it also imposes stricter laws concerning 

plastic waste regulation and recycling [73].  

A significant policy proposal is the construction of 

frameworks that support international partnerships in data 

sharing and resource distribution. International partnerships 

help stakeholders develop databases centrally to store both 

metaproteomic and environmental data, which ultimately 

boosts the ability of machine learning models to forecast. This 

partnership will provide global researchers with easy access to 

superior datasets, thus accelerating the development of plastic 

degradation research. The growth of these technologies 

depends on the vital contribution of the private sector [74]. 

Companies that create and manage plastic waste need to put 

resources into AI-driven waste management systems and 

bioengineered microorganisms adept at plastic degradation. 

Putting in place industry practices is necessary for decreasing 

the environmental stress due to plastic production and disposal 

[75]. In addition, by using public-private partnerships, the 

promotion of technology commercialization helps secure 

access for both developed and developing countries. 

 

C. Research Gaps and Developmental Areas 

The exciting prospects of using machine learning and 

metaproteomics for plastic degradation notwithstanding, 

important research gaps remain to be resolved. An important 

barrier is the availability of extensive datasets. Though 

metaproteomics gives an important understanding of microbial 

processes, the diversity of environmental situations in assorted 

ecosystems constrains the ability to generalize findings. 

Understanding the multiple environmental indicators that 

govern plastic degradation—like pH levels, environmental 

temperature shifts, and nutrient availability—will help refine 

the precision of machine learning models.  

Also, interdisciplinary partnership is critically important for 

overcoming the technical hurdles associated with integrating 

machine learning and metaproteomics. Academics in 

bioinformatics, computational biology, environmental science, 

and data analytics should team up to improve these 

technologies for greater application. Research investments that 

integrate multiple fields would likely lead to more efficient 

resilient machine learning models in predicting microbial 

responses in tough contexts. These models will support 

optimizing the processes of plastic degradation for different 

plastics and environmental situations.  

In addition, further research is essential to evaluate the 

enduring environmental consequences of constructed microbial 

consortia. Even though microbes bioengineered for plastic 

degradation show great potential, assuring their safety and 

functionality in real settings is crucial. Studies beyond a typical 

ecological timeframe are important to assess the evident risks 

and potential benefits of launching genetically modified 

organisms into nature.  

Ultimately, continuous developments in computational 

strategies, specifically the formation of new machine-learning 

approaches, will improve the features of these technologies. 

Improving algorithms to address variability in the environment 

better and using new data types—genomic and 

transcriptomic—will improve the accuracy of predictions and 

the performance of plastic degradation systems. 

 

VII. CONCLUSION 

Machine learning combined with metaproteomics presents a 

major opportunity to tackle the global plastic pollution crisis by 

bettering our efficiency and sustainability in the degradation of 

plastic waste. Using the predictive capabilities of machine 

learning algorithms and the extensive biological information 

from metaproteomics, we are able to identify ideal microbial 

communities as well as enzymes that promote plastic 

degradation. Using these technologies improves scalability and 

efficiency in plastic degradation. Also, it supports the extensive 

goals of a circular economy, which converts plastic waste into 

repurposed materials instead of disposing of it. These 

accomplishments stress the likelihood of a future period when 

plastic waste ceases to be an ongoing environmental risk and 
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instead becomes a managed resource for reutilization in 

industrial applications. As these technologies develop, they 

may greatly affect the reform of waste management systems 

and contribute to increasing global environmental 

sustainability. 
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