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Abstract— Indoor Positioning Systems (IPS) have emerged as essential technologies for achieving accurate localization and navigation 

within enclosed environments where satellite-based systems, such as the Global Navigation Satellite System (GNSS), are unreliable. 

This article provides a comprehensive overview of the major IPS technologies, highlighting their operating principles, advantages, and 

limitations. The study examines a diverse range of positioning methods, including computer vision-based systems with dynamic tracking 

capabilities, pedestrian dead reckoning (PDR) solutions that function independently of external infrastructure, and communication 

signal–based approaches such as Ultra-Wideband (UWB), Radio Frequency Identification (RFID), Bluetooth Low Energy (BLE), Wi-

Fi, and ZigBee. Each technology demonstrates distinct performance characteristics in terms of accuracy, cost efficiency, scalability, and 

energy consumption. By systematically comparing these approaches, this work identifies the contexts in which each technology performs 

optimally and discusses the trade-offs associated with their implementation. Furthermore, the paper synthesizes recent advancements 

that integrate artificial intelligence, machine learning, and sensor fusion techniques to enhance positioning precision and robustness 

under complex indoor conditions. The findings of this review aim to assist researchers, engineers, and practitioners in selecting the most 

appropriate IPS solution for specific application domains, facilitating informed decision-making in designing effective and reliable 

indoor localization systems. 
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I. INTRODUCTION 

Positioning systems are one of the most useful technologies 

that has been developed. The usage of this technology varies 

from the military field to hospitality, search and rescue, and 

even recreation field. Global Navigation Satellite Systems 

(GNSS) are one of the most popular positioning or navigation 

systems. As the name suggest, GNSS is a satellite-based 

positioning system. Global Positioning System (GPS), which 

people uses to assist the process of navigating them from a 

place to another is a type of GNSS. However, GNSS signals 

are disturbed and not really reliable to be used indoor [1]. This 

inherent limitation of GPS has long spurred the quest for 

alternative solutions. Researchers have tirelessly tackled the 

challenge of indoor positioning, recognizing its immense 
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potential. The rise of smartphones and smartwatches, carried 

by most people like digital appendages, has only intensified 

this pursuit. These ubiquitous devices hold the key to unlocking 

the doors of indoor location awareness.  

GPS's intrinsic restriction has long fuelled the search for 

alternate alternatives. Indoor positioning system (IPS) is 

designed to enable precise location tracking and navigation 

within enclosed spaces. Researchers have worked extensively 

on the problem of indoor placement, seeing its enormous 

potential. The emergence of smartphones and smartwatches, 

which most people carry about like digital appendages, has 

only fuelled this drive. IPS can be used in various applications. 

Humans are finding specific uses at train stations, bus terminals, 

retail malls, museums, airports, and libraries. Indoor navigation 

devices benefit visually challenged persons as well. Unlike 

outdoor areas, navigation through indoor areas are more 

difficult. Indoor environments are typically densely packed 

with obstacles that impede signals between emitters and 

receivers, and a diverse range of materials, forms, and sizes 

have a greater impact on signal transmission than in outside 

conditions [2]. 

These commonplace technologies hold the key to opening 

the doors to indoor location awareness. This study conducts an 

examination of the developing topic of indoor positioning 

devices. We reveal a patchwork of techniques, each contending 

for supremacy in this new environment. From computer 

vision's keen eye for landmark recognition [3] to the pin-point 

accuracy of Ultra-Wideband (UWB) [4] radar, from Wi-Fi [5] 

and Bluetooth's [6] ubiquitous radio waves to the niche 

communication protocols of RFID [7] and ZigBee [8], and 

even the stride-counting ingenuity of Pedestrian Dead 

Reckoning (PDR) [9], each technology has distinct strengths 

and limitations. The purpose of this survey is to review the 

various technologies that have been employed for IPS.  

The rest of the paper is organized as follows: Section II 

addresses the previous works of surveying the trend of IPS. 

This includes the type of IPS technologies and techniques. Next, 

Section III describes the three types of IPS technologies. The 

improvements of the IPS or the current findings are discussed 

in Section IV. Finally, the conclusions are drawn in Section V.  

 

II. RELATED WORKS 

From time to time, researchers and inventors have come out 

with various technologies to be used as a part of the IPS. 

Improvements are made actively to increase and improve the 

performance of the IPS depending on the situation and 

scenarios that we have been facing. Recent studies have sought 

to organize the diverse landscape of indoor positioning system 

(IPS) technologies by classifying them according to their 

underlying principles and technical features. In particular, 

Mendoza-Silva et al. [10] provided a comprehensive meta-

review that grouped IPS methods based on sensing techniques 

and implementation characteristics, while Brena et al. [2] 

traced the evolution of these technologies from early signal-

based approaches to more advanced hybrid systems. 

Collectively, these works establish a systematic understanding 

of IPS development and highlight how varying methodological 

foundations shape the performance and applicability of 

different positioning solutions. Brena et al. [2] classified IPS 

technologies into 5 main groups which are optical technologies, 

sound-based technologies, radio frequency technologies, 

passive/ without embedded information technologies, and 

hybrid technologies. For more specific technologies and to 

which classification they are categorized, table 1 can be 

referred. These classifications are based on the type of signal 

used, whether the signal is received and analyzed, and whether 

or not the signal contains intentionally embedded pattern of 

symbolic information [2]. However, authors of [10] took a 

more general approach by classifying not putting the 

classification based on the 3 criteria stated in [2]. The 

commonly used IPS technologies stated by the authors are 

grouped into 10 which are light, computer vision, sound, 

magnetic fields, dead reckoning, UWB, Wi-Fi, BLE, Radio 

Frequency Identification (RFID) and Near Field 

Communication (NFC), and other technologies. The surveys 

presented in [2] and [10] offer a comprehensive overview of 

the indoor positioning systems (IPS) domain, outlining many 

of the technologies currently in widespread use. However, 

while both studies provide valuable breadth, they do not 

examine each technology in substantial technical depth. 

Zafari et al. [11] provided a detailed survey identifying 

eight major indoor positioning system (IPS) technologies, most 

of which are based on communication signals. The study 

discusses Wi-Fi, Bluetooth Low Energy (BLE), ZigBee, RFID, 

ultra-wideband (UWB), acoustic signals, ultrasound, and 

visible light, offering concise explanations of their underlying 

working principles and summarizing key research findings 

associated with each. Lastly, Kunhoth et al. mentioned in [12] 

7 IPS technologies which are computer vision, Wi-Fi, BLE, 

RFID, VLC, UWB and PDR. Although they only addressed 7 

IPS technologies, these 7 are the most common technologies 

used in IPS nowadays because of each of their advantages such 

as low cost, easy to be accessed and used, etc. These 7 IPS 

technologies are also discussed in detail on their history, 

mechanism, recent developments, and future improvements. 

Overall, each of the previous works has their own strengths. 

Table 1 shows the summary of the previous works and the IPS 

technologies mentioned in the articles. 

Depending on what type of IPS technology is used in the 

system, the positioning techniques can be different too. Even 

the same IPS technology can have multiple way of positioning 

techniques that can be used. We distinguish between 

techniques and technologies, where "technique" refers to some 

basic abstract tool that is not necessarily tied to physical media 

and could be used in several "technologies"; "technologies" are 

specific ways of using physical signals registered through 

sensors, such as radio waves or magnetic fields, to achieve the 

goals of an IPS. According to Brena et al. [2], the process of 

location estimation in indoor positioning systems can be 

conceptually divided into three distinct stages. The first step is 

evident, in which instruments engaged measure signal 

properties. The second stage is range estimation, in which 

devices utilise the measurements or evidence collected to 

estimate the distance to/from the item to be located. The next 

stage involves combining such range estimations to estimate 

position. Brena et al. described the techniques of positioning 

used in the IPS in detail and includes as many techniques as 

possible in [2]. 

Both Mendoza-Silva et al. [10] and Kunhoth et al. [12] 

focused on classifying indoor positioning techniques into four 

principal categories: time-of-arrival (ToA), also referred to as 
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time-of-flight (ToF) in some studies; time-difference-of-arrival 

(TDoA); angle-of-arrival (AoA); and received signal strength 

(RSS) or received signal strength indicator (RSSI). 

 

Table I. Different Indoor Positioning Technologies 

reported in previous works. 

Literature Ips Technologies Mentioned 

Brena et al. [2] 

1. Optical Technologies: 

Infrared, VLC 

2. Sound-Based Technologies: 

Ultrasound, Audible Sound 

3. Radio Frequency 

Technologies: Wi-Fi, BLE, 

ZigBee, RFID, UWB 

4. Passive/ without Embedded 

Information Technologies: 

Magnetic Field, Inertial 

Technology, Passive Sound-

Based Technology, Passive 

Visible Light, Computer 

Vision 

5. Hybrid Technologies 

Mendoza-Silva et 

al. [10] 

1. Light: VLC, Infrared 

2. Computer Vision 

3. Sound: Audible Sound, 

Ultrasound 

4. Magnetic Fields 

5. Dead Reckoning: PDR 

6. UWB 

7. Wi-Fi 

8. BLE 

9. RFID and NFC 

10. Other Technologies: Cellular 

Networks, Wireless Sensor 

Network 

Zafari et al. [11] 

1. Wi-Fi 

2. BLE 

3. ZigBee 

4. RFID 

5. UWB 

6. Visible Light 

7. Acoustic Signal 

8. Ultrasound 

Kunhoth et al. [12] 

1. Computer Vision 

2. RFID 

3. Wi-Fi 

4. VLC 

5. UWB 

6. BLE 

7. PDR 

 

These classifications capture the most prevalent 

measurement principles employed across a wide range of IPS 

technologies. On the other hand, Zafari et al. [11] provides the 

most comprehensive and in-depth analysis among the recent 

studies, offering detailed explanations of the underlying 

principles and comparative evaluations of various indoor 

positioning technologies. Each detection technique discussed 

in [11] is presented with thorough detail, supported by the 

inclusion of relevant equations and clear illustrative diagrams 

that enhance conceptual understanding. It is suggested to refer 

to the article for clearer understanding regarding the location 

detection techniques used in IPS. Table 2 shows the summary 

of detection techniques addressed in the previous works. 

 

III. TYPES OF INDOOR POSITIONING SYSTEMS 

IPS can be classified into 3 categories, based on the adopted 

positioning technologies [12]. Computer vision, 

communication technology, and pedestrian dead reckoning 

(PDR).  

 

A. Computer Vision 

Computer vision IPS takes advantage of the pervasiveness 

of visual clues within buildings to turn seemingly static settings 

into rich data landscapes [13]. Cameras strategically placed 

across the environment capture the environment, methodically 

analysing pixelated landscape for identifying landmarks, 

architectural details, or signs. The collected frames are then 

compared to a pre-existing computer model, locating the user's 

position with astonishing precision [3]. This dependence on 

underlying environmental properties provides inherent benefits 

such as broad application, scalability, and possibly unsurpassed 

accuracy. However, for best performance, proper calibration 

and illumination are required, and complicated settings with 

dynamic changes or occlusions can provide considerable 

obstacles [11].  

 

B. Communication Technology 

To determine user position, communication technologies 

IPS rely on existing infrastructures like as Wi-Fi, Bluetooth, 

and even ultrasonic signals. Sensors strategically positioned 

around the building collect and analyse the strength and timing 

of these signals sent by user devices, constructing a tapestry of 

data that indicates to their location within the building [12]. 

This strategy thrives on convenience: by using existing 

infrastructure, no extra installations are required, and its 

ubiquitous availability makes it easily deployable in a variety 

of scenarios [14]. However, it is subject to signal interference, 

complicated layouts, and multi-story structures, which can 

reduce its accuracy. Furthermore, depending merely on signal 

strength may not deliver the pinpoint precision required for 

applications requiring centimetre-level precision. In this article, 

we will be discussing on the usage of UWB, RFID, Wi-Fi, 

Bluetooth, and ZigBee in IPS.  

 

C. PDR 

Pedestrian dead reckoning IPS venture into self-contained 

positioning, freeing users from reliance on external signals or 

infrastructure. These systems measure movement within the 

building by utilising sensors such as accelerometers and 

gyroscopes installed in user devices. Each step, turn, and tilt 

adds to a virtual map of the user's journey, meticulously built 

by their own actions [15]. This independence has intrinsic 

benefits, such as continual positioning even in situations with 

little infrastructure or signal coverage. However, PDR is prone 
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to drift over time. Accumulated errors caused by sensor limits 

or ambient conditions might bias location estimations over 

time [16], necessitating frequent calibration or integration with 

other IPS approaches for best accuracy.  

Table II. Different Indoor Positioning location detection 

techniques reported in previous works. 

Literature Ips Technologies Mentioned 

Brena et al. [2] 

1. Multilateration 

2. ToA/ ToF 

3. TDoA 

4. AoA 

5. RSS 

6. Proximity 

7. Fingerprinting 

8. Signal Propagation 

9. Multipath Environment 

10. Line of Sight (LoS) 

11. Synchronization 

Mendoza-Silva et al. 

[10] 

1. ToA 

2. TDoA 

3. AoA 

4. RSS 

Zafari et al. [11] 

1. RSSI 

2. Channel State Information 

(CSI) 

3. Fingerprinting/ Scene 

Analysis 

4. AoA 

5. ToF/ ToA 

6. TDoA 

7. Return ToF (RToF) 

8. Phase-of-Arrival (PoA) 

Kunhoth et al. [12] 

1. ToA 

2. TDoA 

3. AoA 

4. RSS 

 

 

 

IV. CURRENT TECHNOLOGIES 

A. Computer Vision 

The application of computer vision algorithms to pictures 

captured using imaging techniques such as cameras is referred 

to as computer vision localization. The analyses discover 

important elements in the scene that allow for the estimation of 

the locations of entities in the scene or the position of the 

imaging equipment recording the scene [10]. The technology 

takes real-time video or photos and extracts crucial aspects 

from the situation, such as unique visual markers or 

recognisable patterns. The system can precisely compute the 

location and orientation of objects or persons inside the space 

by analysing images and comparing them to a pre-existing map 

or reference database.  

Fusco et al. [3] focused on enhancing indoor navigation for 

individuals with visual impairments by developing a 

smartphone-based system that integrates sign recognition with 

visual–inertial odometry (VIO) to enable accurate localization 

and guidance. This user-friendly approach leverages readily 

available smartphones and pre-existing maps, empowering 

individuals with independent mobility despite their visual 

limitations. Chao et al. [17] explores 3D positioning for mobile 

robots controlled by tablets, utilizing a single camera and user- 

selected targets for estimating the target's location. While 

requiring precise camera calibration and robot movement, this 

method showcases the potential of computer vision for intuitive 

robot control. 

With the emergence of virtual reality (VR) and augmented 

reality (AR), Huang et al. [18] proposed a novel AR approach 

for indoor navigation called Augmented Reality Based Indoor 

Navigation System (ARBIN). The technology excels at 

properly putting AR objects on smartphone screens by using 

BLE beacons for location and route planning. ARBIN delivers 

exact navigation directions by improving distance prediction 

between beacons and phones and enhancing 3D model overlay 

techniques, particularly in huge structures where typical 2D 

maps fail. This study confirms the system's usefulness through 

experimental validation, heralding more intuitive and user- 

friendly indoor navigation experiences. 

Li et al. [19] conducted another study on augmented reality 

(AR)–based indoor navigation, proposing a vision-driven 

approach that utilizes a 3D feature database for camera 

localization and precise indoor positioning. It uses RGB-D 

SLAM (Simultaneous Localization and Mapping) and deep 

learning technologies to produce a 3D feature database for 

correct camera pose data. The system also includes an AR 

registration methodology for incorporating AR experiences 

into a gaming engine. This adaptive solution, with a remarkable 

average localization accuracy of 35cm, has potential 

applications in AR, robotics, indoor mapping, and self-driving 

automobiles, pushing the frontiers of camera localization for a 

variety of real-world scenarios. 

Computer vision based IPS provide various benefits by 

interpreting visual data via image processing and pattern 

recognition. One significant advantage is the ability to give 

exact location in dynamic conditions when traditional 

approaches could fail [3]. It can also help with gesture 

recognition and object identification [12], improving the user 

experience overall. However, obstacles include lighting 

sensitivity, potential privacy concerns owing to visual data 

gathering, and the requirement for significant computer 

resources. 

 

B. Communication Technologies 

1)  UWB: Ultra-Wide Band (UWB) technology is used in IPS 

by estimating the distance between anchors and tags, using 

time-based ranging algorithms [20]. UWB utilizes short-

duration, low-power radio frequency pulses to determine the 

precise location of objects or devices within an indoor 

environment. UWB's high precision and resistance to 

interference make it suitable for applications like asset tracking, 

indoor navigation, and location-based services in environments 

where accuracy is crucial.  

The study presented in [21] offers a comparative analysis of 

Wi-Fi and ultra-wideband (UWB) fingerprinting techniques 

under similar experimental conditions to evaluate their relative 

positioning performance. While both offer similar accuracy 
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with traditional KNN algorithms, UWB performs better when 

utilizing a novel dynamic KNN algorithm that leverages 

channel features. This suggests UWB's potential for more 

flexible and potentially more accurate indoor positioning 

systems. 

Hao et al. [22] proposes a new UWB indoor positioning 

method using the OVSF-TH algorithm, spectral density 

analysis, and triangulation. It's simple, inexpensive, and 

accurate even in non-line-of-sight environments. The key 

contributions of [22] include leveraging ultra-wideband (UWB) 

signals to extract richer positional information and 

incorporating the analysis of signal “blocking” effects to 

enhance directional accuracy in indoor positioning. 

Ridolfi et al. [23] investigated the use of ultra-wideband 

(UWB) technology for tracking athletes’ movements, 

experimentally evaluating its performance in capturing precise 

sport postures and motion dynamics. It analyzes tag placement 

and movement patterns' impact on accuracy. Particle and 

Kalman filters with optimizations are implemented, showing 

good results with average errors of 20 cm and proves that UWB 

is suitable for dynamic athletic activities. 

With the emergence of machine learning (ML) and artificial 

intelligence (AI), everyone knows that it can be beneficial to 

human in various field. Che et al. [20] discusses NLoS effects 

and existing ML algorithms to mitigate them. ML algorithms 

such as SVM, DT, and k-NN are shown to be able to help in 

NLoS environments.  

Another improvement was proposed in 2022, which is UWB 

IPS based on a digital twin [24]. It uses perception-prediction 

feedback and error mitigation with neural networks to improve 

accuracy. A case study validates the system with significant 

accuracy improvement. The key contributions of [24] involve 

the integration of a digital twin framework into a UWB-based 

indoor positioning system to optimize anchor placement and 

mitigate positioning errors. 

UWB IPS offer high precision [20] with low latency, 

enabling accurate location tracking in real-time. UWB's 

advantage lies in its ability to deliver precise positioning even 

in challenging environments, such as multipath and dense 

obstacle scenarios [25, 26]. However, UWB systems may face 

challenges in terms of higher implementation costs and power 

consumption. 

 

2)  RFID: RFID is the core technology required to realise the 

Internet of Things (IoT) and cyber-physical systems (CPS), and 

is widely utilised in health monitors, smart homes, smart cities, 

vehicle positioning, construction, supply chain management, 

and item tracking, among other applications [27]. RFID's low 

cost, long life, low power consumption, and ease of 

deployment entice numerous researchers to employ it in 

interior situations. RFID used in indoor positioning is less 

expensive and uses less energy than ultrasonic, Wi-Fi, and 

Bluetooth. RFID systems are typically comprised of tags, 

readers, and a back-end computer system. Most IPS prefer the 

use of ultra-high-frequency (UHF) RFID technology due to its 

broader read/write spectrum and increased metadata 

capabilities for the RFID tags being read [28]. Advanced 

operations find better support in the higher-frequency bands.  

Manman et al. [29] introduces a new method for indoor 

RFID positioning that combines AP clustering and a refined 

particle swarm algorithm. The clustering divides the area based 

on signal strength similarity, reducing the search space for the 

particle swarm algorithm. This leads to faster and more 

accurate tag location while minimizing human intervention in 

cluster selection. 

A single-antenna indoor positioning system (IPS) utilizing 

multiple beams for direction and power control was proposed 

in [28]. This approach removes the need for multiple physical 

antennas and enables two-dimensional localization with an 

extended range and improved accuracy compared to 

conventional methods. For indoor mobile robot self-

localization, Mi Jian et al. [30] developed an HF-band RFID 

system incorporating multiple scanners and passive tags. 

A novel approach for indoor object localization using 

passive RFID tags deployed in the environment is proposed [7]. 

Mobile devices receive signals from these tags, allowing their 

location to be estimated through a developed algorithm. This 

tag-free method offers flexibility and easy implementation 

while achieving high accuracy through optimized tag 

deployment strategies.  

In most RFID positioning systems, more than one antenna is 

required to allow the positioning algorithm to reach greater 

precision. Furthermore, some researchers have suggested 

single antenna-based locating systems that are better suited for 

usage in interior conditions. Then, data mining approaches may 

be employed to increase the accuracy of indoor localization 

algorithms, and more sensors can be used for indoor placement 

[31]. Weng et al. [32] demonstrated a power-adaptation 

approach that improved location accuracy in a single antenna 

RFID system.  

Finally, the limitations of the LANDMARC algorithm, 

which relies on easily disrupted Received Signal Strength for 

positioning [27]. LANDMARC is an algorithm that estimates 

the location of an RFID tag by comparing its signal strengths 

to those of reference tags with known locations [33]. Many 

academics have proposed improvements to the LANDMARC 

technique in order to improve the accuracy, robustness, and 

depth of operation while performing localization.  A Bayesian 

Probability and K-Nearest Neighbour (BKNN) method was 

proposed, which applies a Gaussian filter to reduce noise and 

interference and determines the most probable location based 

on neighbouring reference tags [27].  This method significantly 

reduces location errors compared to traditional methods, 

showcasing an average error of only 15 cm. 

RFID IPS are cost-effective and excel in asset tracking and 

identification. RFID's main advantage lies in its ability to 

operate without a direct line of sight and in harsh 

environmental conditions [27, 28]. However, the range 

limitation and potential interference from metal objects can 

pose challenges in certain applications [7]. 

 

3)  Wi-Fi: Wi-Fi-based IPS use signals from Wi-Fi access 

points to identify the location of devices within interior settings. 

This is accomplished through methods like as signal 

triangulation or trilateration, which involve measuring angles 

or distances between the device and various known access 

points [34]. Wi-Fi fingerprinting entails compiling a database 

of signal strength patterns at numerous places, and real-time 

comparisons help in determining the location of a device [12]. 

The Received Signal Strength Indicator (RSSI) is a critical 

statistic that calculates distances based on the power level 

received from access points. Machine learning algorithms, 
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crowdsourcing, collaborative positioning, and integration with 

other sensors contribute to enhancing accuracy and adapting to 

changing environments. 

Ali et al. [35] proposed a self-updating Wi-Fi positioning 

system that avoids manual calibration. Instead of pre-built 

radio maps, it learns propagation loss parameters from IoT 

sensors in real-time, updating maps automatically. While using 

simple wall information instead of complex maps, it achieves 

comparable accuracy to traditional survey-based methods. 

Ko et al. [36] has successfully implemented a passive 

fingerprinting system using an active fingerprinting radio map 

to reduce missing RSSI values. To the best of our knowledge, 

this is the first study to take optimal placement of Wi-Fi 

Sniffers into account for Wi-Fi-based passive fingerprinting 

implementation in the real world in order to reduce positioning 

errors, which can serve as a baseline for future related research. 

Ye and Peng [37] enhanced Wi-Fi fingerprinting accuracy 

for robotic navigation by employing denser reference points, 

standardized signal strength values, and an adaptive K-Nearest 

Neighbour (KNN) algorithm to minimize localization errors. 

When integrated with a grid-based navigation framework, their 

approach achieved a 62% navigation success rate within 0.8 

meters, demonstrating significant improvements in positioning 

precision and reliability. Zhang et al. [38] proposed an answer 

to the challenge of limited channel state information (CSI) in 

Wi-Fi positioning. It proposes collecting CSI along pre-

determined trajectories instead of at individual stationary 

points, capturing continuous spatial and temporal information. 

This data is then processed by a deep learning network, 

significantly outperforming conventional methods based on 

stationary CSI. 

Chan et al. [39] developed a passive Wi-Fi–based indoor 

positioning system that eliminates the need for user interaction 

or device modification. Their approach employs a genetic 

algorithm to optimize the spatial placement of Wi-Fi sniffers, 

maximizing localization accuracy by analyzing signal strength 

data from nearby devices. This proof-of-concept demonstrates 

the feasibility of achieving real-time passive indoor positioning, 

highlighting its potential for unobtrusive and scalable 

deployment in practical environments. Wi-Fi-based IPS utilize 

existing infrastructure for location tracking, offering 

widespread coverage. Wi-Fi's advantage lies in its availability 

and compatibility with a variety of devices. However, accuracy 

may vary, especially in crowded areas [35], and the reliance on 

existing Wi-Fi networks may limit its precision [2]. 

 

4)  Bluetooth: Bluetooth technology has been primarily 

developed for short-range wireless transmission with low 

power consumption and low cost [40]. Then, with the 

publication of the Bluetooth 4.0 specification in 2010 [40], 

Bluetooth Low Energy (BLE) emerged as an appealing 

wireless technology that may be used in indoor location 

systems. BLE has now been used for a variety of location-

based services, ranging from proximity detection to positioning 

in real-time location systems (RTLS) [41]. Furthermore, BLE 

technology is widely available on practically all portable 

devices, including smartphones and electrical development kits 

[11].  

The study of Maneerat and Kaemarungsi [42] focuses on 

optimizing the design of BLE-based IPS for better accuracy 

and cost efficiency. It analyzes three different designs 

(proximity, trilateration, and scene analysis) across two 

building sizes. The findings suggest that the proximity is least 

accurate (5-7m error) and suitable for low-cost applications, 

the trilateration offers good accuracy (3-5m) with efficient 

reference node deployment (can reduce nodes by 154% vs. 

scene analysis), and the scene analysis provides the best 

scalability for high accuracy (≤3m) but requires more nodes 

(still 40% less than proximity). Thus, framework helps system 

designers choose the optimal design based on desired accuracy 

and cost constraints.  

Rozum et al. [43] proposed a simplified Bluetooth Low 

Energy (BLE)–based indoor positioning system designed for 

efficient deployment in narrow corridors. The system employs 

the Log-Distance Path Loss (LDPL) model within a one-

dimensional framework, where the perpendicular coordinate is 

considered negligible, and incorporates a wireless Single Input 

Multiple Output (SIMO) configuration to mitigate RSSI 

fluctuations and enhance portability. Experimental results 

demonstrate an average positioning accuracy of 0.92 meters 

without the need for filtering algorithms, indicating its 

suitability for corridor-based localization with minimal 

implementation complexity. 

Sthapit et al. [44] proposes a BLE-based IPS that utilizes 

machine learning for fingerprinting. This approach avoids the 

time-consuming manual fingerprinting process. The system 

achieved an average estimation error of 50 cm, demonstrating 

the potential of machine learning for improving BLE-based 

indoor positioning accuracy. 

Lastly, Bai et al. [45] presented in their research, a low-cost 

BLE system for monitoring user location in home 

environments. It uses a BLE beacon worn by the user and 

strategically placed Raspberry Pis with BLE antennas. The 

system employs both trilateration and fingerprinting to 

determine user location and track their living patterns. The 

results show that the system can accurately track user location 

within the home, even with variations in beacon positions and 

quality. This opens up possibilities for monitoring user health 

and activity patterns in a non-intrusive manner. 

End users now have simple access to many critical 

capabilities of IPSs, such as navigation and tracking services, 

because to the broad deployment of BLE technologies such as 

Bluetooth beacons. Thus, the current study uses BLE 

technology and a new installation design technique to evaluate 

how the systematic design of an IPS might be used to 

accomplish a needed performance target for various indoor 

location-based applications. BLE Indoor Positioning Systems 

leverage the ubiquity of BLE-enabled devices and offer energy 

efficiency. BLE's advantage is its compatibility with 

smartphones and other consumer devices [16], making it 

widely accessible. Nonetheless, limited range and potential 

signal obstructions can impact accuracy in complex indoor 

environments. 

 

5)  ZigBee: ZigBee is a Bluetooth-like technology, which runs 

at around a fourth of Bluetooth's maximum transmission 

throughput of 1 Mbps [46]. The low data rate makes it 

unsuitable for high-speed data transmission applications, but 

the approach allows for multiyear battery life and connectivity 

to a large number of nodes. Because of its unique features, 

ZigBee is the best choice for implementing an ad hoc, on-

demand, low-cost, and low-power location tracking, and 
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monitoring system. Zigbee supports a huge number of nodes, 

around 65000 nodes. The replacement of a battery in a WSN 

(wireless sensor networks) is a critical task. Zigbee has a very 

long battery life, thus battery replacement is not an issue. For 

position estimate, the location fingerprinting approach is 

applied [8]. 

Athira et al. [8] introduced a low-cost ZigBee-based system 

for indoor location tracking uses "fingerprinting" to locate 

people or objects, a system of sensors collecting signal 

strengths from access points, creating a database of 

"fingerprints" for different locations. When a location is 

requested, the system compares current signal strengths to the 

database and returns the best match. This provides a simple and 

effective indoor positioning solution.  

Loganathan et al. [46] improved indoor localization 

accuracy by fusing ZigBee signal strength (RSSI) and 

odometry data. A novel framework optimizes weighting 

between these methods based on their individual limitations. A 

self-adaptive filter further adjusts weights during movement, 

leading to a more efficient and accurate localization scheme. 

This approach significantly improves location tracking 

compared to existing methods. 

6)  Shen et al. [47] introduced a ZigBee-based sensor 

network that estimates distances between nodes and reference 

points using received signal strength indicator (RSSI) 

measurements. By applying both average and Gaussian 

filtering models, the system achieves rapid location estimation 

with moderate accuracy. This straightforward and hardware-

independent approach provides a practical solution for 

fundamental indoor positioning applications. 

Cheng and Syu [48] applied a backpropagation neural 

network (BPNN) to an area-based ZigBee positioning system 

to enhance localization accuracy. By learning the signal 

characteristics of the surrounding environment, the BPNN 

model provides more precise location estimates than traditional 

nearest neighbour algorithms. This study highlights the 

potential of neural network–based approaches to improve 

ZigBee indoor positioning performance, even under 

challenging conditions such as signal interference and 

multipath effects. 

ZigBee Indoor Positioning Systems, based on low-power, 

low-data-rate wireless communication, are energy-efficient 

and suitable for applications with numerous nodes [8]. 

ZigBee's advantage lies in its ability to create robust mesh 

networks. However, its limited data transfer rates may restrict 

its use in certain high-throughput scenarios, and interference 

from other ZigBee networks can affect performance. 

 

 

C. Pedestrian Dead Reckoning 

The primary idea is to tally up minor movements from a 

known starting location to predict the pedestrian's trajectory. 

PDR's main issue is the substantial error propagation caused by 

relative movement changes. After a few steps, the changes in 

step length and direction add up to produce highly imprecise 

position detection. Therefore, a recalibration of the user 

position is required at regular intervals [16, 15]. As detailed by 

Han et al [9], PDR is a frequently used localization approach 

that employs an Inertial Measurement Unit module or portable 

devices such as smartphones [16]. To minimize the drift of 

PDR, it must be combined with other signals such as GPS [14], 

Wi-Fi [49, 50], BLE [51], and so on, as PDR alone is prone to 

drift.  

The application of computer vision algorithms to pictures 

captured using imaging techniques such as cameras is referred 

to as computer vision localization. The analyses discover 

important elements in the scene that allow for the estimation of 

the locations of entities in the scene or the position of the 

imaging equipment recording the scene [10]. The technology 

takes real-time video or photos and extracts crucial aspects 

from the situation, such as unique visual markers or 

recognisable patterns. The system can precisely compute the 

location and orientation of objects or persons inside the space 

by analysing images and comparing them to a pre-existing map 

or reference database.  

Lu et al. [52] explores a novel way to use inertial 

measurement units (IMUs) for indoor navigation by placing 

them on the chest instead of the traditional location of the hips. 

This allows for more accurate step length estimation and avoids 

the limitation of zero-velocity updates due to upper body 

movement. Additionally, the system incorporates map-

matching with particle filtering and altitude tracking using a 

barometer for 3D positioning in multi-floor buildings. This 

approach achieved a mean error of 5.2 meters after an 800-

meter walk.  

Zhu et al. [53] proposed a multi-source indoor positioning 

framework that integrates Wi-Fi, Bluetooth, and pedestrian 

dead reckoning (PDR) through an improved weighted centroid 

algorithm combined with adaptive constraint fusion techniques. 

This hybrid approach effectively mitigates Wi-Fi signal 

instability and the cumulative drift errors inherent in PDR, 

achieving higher localization accuracy and stability than any 

single-technology method. Experimental results confirm that 

the fusion-based system consistently outperforms standalone 

positioning techniques in both precision and robustness. 

In 2021, Lee et al. [54] introduces a Kalman filter-based 

fusion of UWB positioning and PDR for accurate indoor 

localization. UWB's high precision is combined with PDR's 

continuous tracking capability to compensate for UWB's NLoS 

errors [55] and PDR's cumulative drift. The proposed scheme 

utilizes deep learning for speed estimation in PDR and 

calibrates heading with UWB assistance. The combined 

approach demonstrates superior performance compared to 

UWB or PDR alone. 

Finally, Han et al. [9] proposes a probabilistic position 

selection algorithm (PPSA) for indoor localization using RSSI 

and PDR data. To address the challenges of mixed LoS and 

NLOS environments, the algorithm incorporates a low-

complexity NLoS identification method. This helps mitigate 

the negative impact of NLoS conditions on RSSI-based 

localization, leading to improved accuracy and reliability. 

PDR Indoor Positioning Systems provide particular benefits 

since they work independently of terrestrial or satellite 

cooperating stations, making them self-contained and 

adaptable to a variety of situations [10, 11]. Furthermore, PDR 

systems are energy efficient since their transmitter power needs 

are low in comparison to other positioning methods. 

Nonetheless, one significant disadvantage of PDR is the 

cumulative nature of its inaccuracies [16, 52]. Inaccuracies in 

the estimating process compound over time, resulting in a 
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progressive development of the positional inaccuracy. To 

address this issue, frequent calibration and integration with 

supporting technologies are required to assure long-term 

accuracy in indoor location [16]. 

 

 

V. CONCLUSION 

 

The study discussed the key technologies that are currently 

used to enable indoor positioning systems, briefly describing 

the approaches and procedures used in each of them. Each 

technology's description is backed by connections to other 

surveys, allowing the reader to utilise this article as a collection 

of links to more specialised studies.  We classified current 

systems based on the positioning technology used. In the last 

ten years, we gave a complete evaluation of the different 

suggested indoor positioning technologies.  
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