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Abstract — Image classification of land using aerial scene classification has become increasingly common across the world. With the 

power of Convolutional Neural Networks (CNNs), the identification of various city township areas using satellite imagery has become 

more efficient as compared to the previous manual labeling method. The objective of this research is to build a convolutional neural 

network model for residential and commercial area identification. The primary aim of this identification system is to support urban 

planning, land use management, and infrastructure development by providing accurate, automated insights into the spatial distribution 

of residential and commercial zones. By replacing manual mapping processes, this system can greatly improve the efficiency in 

analyzing urban landscapes, monitor urban growth, and assist in making informed decisions related to sustainable city planning and 

zoning regulations. In this research, Inception V3 and VGG16 were adopted to develop two transfer learning models for the 

identification system. The Inception V3-based model achieved the highest overall accuracy value of 100%, showing its effectiveness in 

the accuracy of residential and commercial area identification. The proposed CNN model achieved an accuracy of 99%, while the VGG-

16 model, with all configurations being frozen, achieved 99% accuracy. 
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I. INTRODUCTION 

The rapid growth of cities in Malaysia has resulted in an 
increased demand for efficient and accurate identification of 
residential and commercial areas. This demand arises from 
various applications, such as urban planning, real estate 
development, and resource allocation [1]. In addressing this 
need, studies have focused on the development of 
identification systems for residential and commercial areas 
utilizing satellite imagery. Understanding land usage through 

the use of satellite imaging or aerial photography has been a 
popular subject of extensive research. Both offer a bird's-eye 
view of the planet and are employed in geography research 
and land surveying.   

Aerial scene classification provides a high-level 
interpretation of aerial images by assigning a semantic label 
to the entire scene or a significant portion of the scene [2]. This 
approach aims to categorize the image based on its content, 
such as identifying whether it depicts a residential area, a 
forest, or a commercial district. On the other hand, pixel-based 
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or object-based image classification approaches focus on 
assigning labels to individual pixels or groups of pixels 
(objects) within the image. These methods aim to classify each 
pixel or object independently based on its spectral 
characteristics, texture, shape, and other relevant features. 
Birohmatin et al. used this pixel-based or object-based image 
classification for the land cover analysis of Bogor City in 1996 
and 2016 to study the development of the city [3]. 

Aerial scene classification is typically performed using 
deep learning models or traditional machine learning 
algorithms that operate on the entire image. Scene 
interpretation and image categorization have both been 
successfully implemented using deep learning, notably 
Convolutional Neural Networks (CNNs). Convolutional, 
pooling, and fully connected layers make up CNN's multi-
stage, biologically inspired design, which can be effectively 
taught under strict supervision [4]. The classification of land 
use and land cover has recently gained widespread adoption. 
New techniques for classifying land cover and land use based 
on high-resolution digital aerial photography are suggested by 
Yang et al. [5]. While the classification of land use is based on 
a CNN that takes an image patch of 256 x 256 pixels and 
returns a land use label, the classification of land cover is 
based on SegNet offers a class label for each pixel, receiving 
an overall accuracy of 85.7%. 

Taking into consideration the research published in 
classifying land use and the land function from various 
countries, this research aims to build a residential and 
commercial area identification system for Malaysia satellite 
image datasets using Convolutional Neural Networks. 

Two main contributions of this research can be 
summarized as it: 

1. proposes a new convolutional neural network model 
by defining its own convolution layer and dense layer for the 
identification of commercial and residential areas. 

2. adopts the existing models Inception V3 and VGG16 
to develop two transfer learning models for the identification 
system. The dataset on all three models was trained and tested. 
Accuracy, precision, and recall rates were measured and 
compared according to the model's performance. The 
structure of this paper is as follows: 

Section 2: Literature Review provides an overview of 
previous studies on CNNs, transfer learning, and land use 
classification, highlighting key methodologies and techniques 
used in the field. 

Section 3: Proposed Work discusses the datasets, 
preprocessing steps, and the design of the custom CNN model. 
Additionally, it explains the transfer learning models built 
using Inception V3 and VGG16, along with the configurations 
applied. 

Section 4: Experiment and Results presents the 
experimental setup, performance metrics, and comparative 
results of the CNN, Inception V3, and VGG16 models. It 
includes accuracy, precision, recall, and F1-score analysis, 
along with the confusion matrices for each model. 

Section 5: Conclusion summarizes the findings, 
highlights the best-performing model, and discusses the 
practical applications of the system in urban planning and land 
use management. Future research directions are also 
proposed. 

II.  LITERATURE REVIEW 

A. CNN 

Machine learning's potent subfield of deep learning has 

constantly produced state-of-the-art results on a variety of data 

sets. Due to their outstanding performance, Convolutional 

Neural Networks (CNNs), a crucial feature of deep learning, 

have attracted a lot of attention in the area, particularly for 

applications focusing on images. CNNs use a deep feed-

forward architecture and outperform fully connected networks 

in terms of generalization. Their design is inspired by 

hierarchical feature detectors, allowing them to learn abstract 

features and efficiently identify objects [6]. 

CNNs differ from traditional models in that they use 

weight sharing, which is a defining characteristic of CNNs. 

Weight sharing greatly lowers the number of training 

parameters required, improving generalization performance 

and reducing overfitting concerns. The classification and 

feature extraction phases are also integrated by CNNs, 

simplifying their implementation for big networks [6]. 

Convolution layers, pooling layers, and fully linked layers 

make up CNN's basic architecture. In Figure 1, a condensed 

CNN architecture is shown. 

 

 
 

Figure 1. Basic CNN architecture for classification 

In computers, images are represented as interconnected 

pixels. Each pixel or collection of pixels can represent 

different visual attributes, such as edges, shadows, or 

patterns. Convolutions are employed to detect these patterns 

effectively. The convolution layer extracts the feature from 

input images. It employs receptive fields to capture local 

correlations in the image. Each neuron in the layer is 

connected to neurons in the previous layer, and the weight 

vector associated with a receptive field is shared across all 

spatial locations. By sliding the weight vector over the input 

image, the convolution operation generates feature maps 

representing distinct features. This phenomenon of local 

receptive fields significantly reduces the number of trainable 

parameters and enhances feature detection capabilities. 

Following the convolution layer, the pooling layer is 

responsible for downsampling the feature maps. It reduces 

the size of these maps while maintaining important 

information [7]. This is achieved by dividing the feature maps 

into windows and applying a pooling function, such as max-

pooling. By selecting a window and performing pooling, the 

elements within the window are combined to generate an 

output vector. This pooling process greatly reduces the 

number of parameters in the network and introduces 

translation invariance. 
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In a CNN design, the completely connected layer is often 

found at the bottom. For CNN, it acts as the classifier. A 

vector created by flattening the feature maps from the 

convolutional or pooling layers above serves as the input to 

the fully connected layer [7]. The features of the input image 

that were extracted are shown in this vector. The final output 

of the CNN, which might be the predicted class or any other 

desired output, is represented by the output of the completely 

connected layer. 

B. Transfer Learning 

Transfer learning has emerged as an effective technique 

in machine learning and artificial intelligence, which allows 

models to leverage knowledge learned from one source 

domain to another target domain. In the context of 

convolutional neural networks (CNNs), the transfer learning 

process involves the use of pretrained models, such as VGG-

16 and Inception V3, within convolution neural networks 

(CNNs) to improve the efficiency and accuracy in image 

classification tasks. 

With transfer learning, CNN models can benefit from 

pretrained models that have been trained on large-scale 

datasets such as ImageNet. A study has been performed by 

Yosinki et al. (2014) on the transferability of features 

previously learned from the ImageNet dataset through the use 

of different fine-tuning strategies, and their work showed that 

lower layers that capture more generic features are broadly 

transferrable. However, higher layers which capture more 

specialized features are less transferable [8]. VGG16 was 

developed by K.Simonyan et al. (2015) and was well known 

for its deep architecture with 16 layers [9] and Inception V3 

proposed by C.Szegedy et al. (2016) with 48 layers deep 

introduced the concept of inception modules to capture 

features at different scales [10]. 

Transfer learning approaches for image classification 

include feature extraction and fine-tuning. In the feature 

extraction approach, the pretrained model such as VGG16, 

ResNet, and Inception V3 plays the role of feature extractors 

by freezing the pretrained layers and allowing only the 

classification layers on top to be replaced or added and 

trained on a new dataset. A study by Razavian et al. (2014) 

demonstrated that superior performance can be obtained 

using VGG16 as a feature extractor when compared to 

training from scratch across several image classification tasks 

[11]. According to Zhang et al. (2016), their study 

demonstrated the efficacy of using the pretrained model 

ResNet as a feature extractor in task-specific and fine-grained 

image classification tasks [12]. 

In a fine-tuning approach, the pretrained layers are 

partially or fully unfrozen, and the entire network is then 

trained on the new task-specific dataset. Yosinski et al. 

investigated the impact of fine-tuning and found that fine-

tuning the earlier layers of VGG16 could enhance 

performance across image classification tasks [8]. 

Transfer learning with VGG16 and Inception V3 has 

attracted wide applications in multiple image classification 

fields. Tan et al. (2019) demonstrated that transfer learning 

with VGG16 achieved state-of-the-art superior performance 

on the ImageNet dataset and outperformed previous 

approaches and models [13]. Besides that, transfer learning 

with VGG16 and Inception V3 as pre-trained models have 

been widely employed in localization tasks and object 

detection. The region-based CNN (R-CNN) framework was 

introduced by Girshick et al. (2014), which makes use of the 

transfer learning approach with VGG16 for object detection. 

The research conducted showcased outstanding performance 

on well-known benchmark datasets, including MS COCO 

and PASCAL VOC. [14]. 

 

III. PROPOSED WORK 

A. Dataset Description and Preprocessing 

Data sets are crucial for machine learning. They provide 

the foundation for training models, extracting useful features, 

evaluating performance, and making predictions. The image 

dataset was collected from two distinct sources: the Mendeley 

Data website and the satellite imagery relevant to Malaysia 

that was collected manually. The dataset includes 2500 

commercial area images, 2783 dense residential area images, 

and 1829 sparse residential area images from Mendeley Data, 

along with 100 commercial area images, 105 dense 

residential area images, and 106 sparse residential area 

images that were manually collected. All the images in the 

dataset were resized to 224x224x3 and converted into NumPy 

arrays. Additionally, the pixel values were normalized to 

enhance the convergence and stability of the model during 

training. The data set was divided into 70%/30% training and 

testing datasets, respectively. The testing dataset was then 

further divided into two, so that the validation data holds 15% 

of overall and testing data holds another 15%. The image 

samples for each class in the dataset are shown in the 

following Figure 2.  

 

 
Figure 2. Sample from the dataset: (a) commercial area, (b) 

dense residential area, (c) sparse residential area 

 

B.  CNN Model 

The principle of Convolutional Neural Networks (CNN) 

has shown remarkable results in image processing and 

classification tasks [15]. In this project, the convolutional 

layers for feature extraction and nonlinear transformation 

were used. The convolutional layer uses a filter or 

convolutional kernel to slide over the input image or feature 

map, weighing and summing the local regions to generate a 

new feature map. For an input feature map 𝐼  and a 

convolution kernel 𝐹 , the convolution operation can be 

expressed as: 

(𝐼 ∗ 𝐹)𝑖,𝑗 = ∑  

𝑚

∑  

𝑛

𝐼𝑖+𝑚,𝑗+𝑛 ⋅ 𝐹𝑚,𝑛 

𝐼𝑖+𝑚,𝑗+𝑛 denotes the value of the input feature map at the 

position (𝑖 + 𝑚, 𝑗 + 𝑛)  and 𝐹𝑚,𝑛  denotes the value of the 

convolution kernel at the position (𝑚, 𝑛). 
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The CNN model design of this project also adopted the 

idea of the Deep Residual Network (ResNet for short). 

Specifically, it follows the Identity Block design of ResNet 

and improves on it. The core idea of ResNet is to introduce a 

residual mechanism in the network. The output of each 

convolutional layer is the sum of the input and the residual, 

i.e., 𝑦 = 𝐹(𝑥) + 𝑥 , where 𝑥  is the input and 𝐹(𝑥)  is the 

residual. In this way, the gradient can be propagated directly 

to the next layer by short-circuiting the connection. This can 

effectively alleviate the common gradient vanishing problem 

in deep neural networks [16]. 

Three blocks were identified in the G1 CNN model. The 

identity block is a common module in the ResNet. In the 

identity block of this model, the input is the first batch 

normalized, and ReLU activated, and then the number of 

channels is adjusted by a 1x1 convolutional layer. Then, 

another batch normalization and ReLU activation are 

performed, and a dilated convolution layer with variable 

parameters extracts the features. The convolutional kernel 

size and dilation rate of this convolutional layer can then be 

used as parameter inputs, followed by another batch 

normalization, ReLU activation, and 1x1 convolution. The 

original input is also subjected to a 1x1 convolution and batch 

normalization to ensure that the shape is consistent with the 

previous convolution output, which is then summed with the 

convolved output and activated by the ReLU. Typical 

convolution operations focus only on local neighborhoods of 

pixels, for example, a 3x3 or 5x5 region. Dilated convolution, 

however, introduces a new parameter known as the dilation 

rate to expand the receptive field of the convolution kernel 

[17]. If the dilation rate is denoted as d, the distance between 

each element in the convolution operation becomes d. The 

mathematical representation of dilated convolution is 

presented as follows. Assume that the input is an image I of 

dimensions W x H, and the convolution kernel is a k x k 

matrix F, with a dilation rate of d. The dilated convolution 

operation can be represented as: 

𝑜𝑖,𝑗 = ∑  

𝑘−1

𝑚=0

∑  

𝑘−1

𝑛=0

𝐼𝑖+𝑚⋅𝑑,𝑗+𝑛⋅𝑑 ⋅ 𝐹𝑚,𝑛 

In this equation, 𝑜𝑖,𝑗 is an element of the output feature 

map. 𝐼𝑖+𝑚⋅𝑑,𝑗+𝑛⋅𝑑 denotes the value of the input feature map 

at the position (𝑖 + 𝑚 ⋅ 𝑑, 𝑗 + 𝑛 ⋅ 𝑑)  and 𝐹𝑚,𝑛  denotes the 

value of the convolution kernel at the position (𝑚, 𝑛). It can 

be seen here that the dilation convolution inserts 𝑑 −  1 

voids between each element of the convolution kernel, 

allowing the convolution kernel to cover a larger perceptual 

field. It is also worth noting that in dilated convolution, the 

number of elements in convolution kernel F does not increase 

when the dilation rate increases. In other words, the 

complexity of the convolution kernel F does not increase 

even if the dilation rate d increases. This means that although 

the dilated convolution increases the receptive field, it does 

not increase the parameters or calculation of the model. This 

allows the model in this research to receive more contextual 

information while maintaining a higher resolution, which 

facilitates the image classification task. 

  
Figure 3. G1 CNN Structure 
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The specific structure of this project is shown in Figure 3. 

First, the input is batch normalized, ReLU activated, and the 

feature extraction is performed through a 7x7 convolutional 

layer. Then, three identity blocks perform the feature 

extraction and adjustment, with the second identity block 

having a convolutional kernel size of 5 and a dilation rate of 

2, and the third identity block having a convolutional kernel 

size of 3 and a dilation rate of 3. Following this, the feature 

map is converted into a one-dimensional feature vector using 

global average pooling, and a fully connected layer is used 

for classification. 

 

C. Transfer Learning using InceptionV3 

The transfer learning strategy is built around the 

InceptionV3 model. Known for its remarkable performance 

in a variety of image classification tasks, this deep 

convolutional network design has gained widespread 

recognition. Convolutional, pooling, and fully connected 

layers, among others, are included in the numerous layers. 

InceptionV3 features inception modules that employ parallel 

convolutional operations with different kernel sizes, as 

shown in Figure 4 [18]. These modules facilitate the 

capturing of both local and global features, enabling effective 

learning and representation of complex patterns in images. 

 

 
Figure 4. InceptionV3 Architecture [18] 

The pre-trained layers of InceptionV3 up to the 

convolutional layers were obtained from Tensor flow Keras 

by excluding the fully connected layers. Due to the 

predefined input size of the InceptionV3 pretrained model as 

299x299 pixels, adjustments were required for compatibility 

with input images of size 224x224 pixels. Therefore, the 

tensor input was configured to accommodate the specific 

dimensions of the input images. Following the base model, a 

global spatial average pooling layer was added. This layer 

reduces the spatial dimensions of the features obtained from 

the base model and provides a fixed-length feature vector. It 

enables the model to capture global information from the 

extracted features.  

Next, a fully connected layer with 1024 nodes and ReLU 

activation is introduced. This dense layer serves as an 

intermediate step to further process and transform the 

features. The use of ReLU activation helps introduce non-

linearity into the model. Finally, a logistic layer with softmax 

activation is added. This layer produces the final output 

predictions for the three classes: dense residential areas, 

sparse residential areas, and commercial areas. The softmax 

activation ensures that the outputs are normalized 

probabilities, representing the likelihood of each class. 

In the conducted research, three strategies were employed 

to freeze and fine-tune the trainable layers of the network.  

 

 
TABLE I. CONFIGURATION FOR INCEPTIONV3 

 

Configuration Freeze all 

conv layer 

Semi 

freezing 

Unfreeze all 

Trainable 

Parameter 

Customized 

fully 

connected 

layer 

Half of the 

convolutiona

l layers & 

connected 

layer 

All Layer 

Number of 

Trainable 

Parameters 

2,101,251 19,468,227 23,869,603 

 

In the first strategy, all convolutional layers, including 

those in the InceptionV3 base model, were frozen. The 

trainable parameter was set to False for these layers, ensuring 

that their weights remained fixed throughout training. This 

approach leveraged the pre-trained convolutional layers as 

feature extractors while training only the newly added dense 

layers for the specific area identification task.  

The second strategy involved a semi-freezing approach, 

where approximately half of the convolutional layers were 

frozen, starting from the earlier layers of the network. This 

retained some fine-tuning while keeping a substantial portion 

of the pre-trained weights fixed. The goal was to strike a 

balance between leveraging the learned representations from 

the pre-trained layers and adapting to the specific task 

requirements.  

In the third strategy, all layers of the network were 

unfrozen, including both the convolutional layers from 

InceptionV3 and the newly added dense layers. This allowed 

training the entire network from scratch using the dataset. 

Unfreezing all layers provided maximum flexibility for the 

network to learn and adapt to the area identification task, 

albeit requiring a larger training dataset to avoid overfitting. 

Using the three different strategies, the performance of 

trainable layer freezing was assessed for the classification of 

dense residential areas, sparse residential areas, and 

commercial areas in satellite imagery. However, unfreezing 

all layers requires a larger dataset to prevent overfitting. 

When the dataset is limited, there is a risk of the model 

memorizing the training examples instead of generalizing 

well to unseen data. 

In the context of this research, due to the limited dataset 

of satellite images depicting dense residential areas, sparse 

residential areas, and commercial areas, unfreezing all layers 

was not preferred. Instead, the semi-freeze approach was 

considered more suitable. By applying the semi-freeze 

strategy, the advantages of the learned representations from 

the pre-trained layers were retained while allowing 

substantial fine-tuning of the weights to adapt to the task at 

hand. The adoption of this approach aimed to strike a balance 

between leveraging the valuable features extracted by the pre-

trained InceptionV3 model and enabling the network to learn 

task-specific patterns from the limited dataset of satellite 

images. 
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D. Transfer Learning using VGG16 

Due to the enormous number of parameters and lower 

number of layers when compared to other deeper networks 

like InceptionV3 and ResNet, the VGG16 is regarded as a 

broad and shallow convolutional neural network. The 16 in 

VGG16 stands for 16 weighted layers. 13 convolutional 

layers, 5 max-pooling layers, and 3 dense layers make up 

VGG16's total of 21 layers, as depicted in Figure 5. 

 

 

 

 
Figure 5. VGG-16 Architecture [9] 

 

 

 

However, only the convolutional layers and dense layers 

are considered the weight layers which are trainable and sum 

up to 16 layers. Before execution of the transfer learning on 

the VGG16 ‘ImageNet’ pre-trained model, the original 3 

dense layers (fully connected layers) from the pre-trained 

model are replaced with a few customized layers to form the 

VGG16-Custom Model for the satellite image classification 

task.  

The customized layers include a global average pooling 

2D layer, which reduces the spatial dimensions of the feature 

map and computes the average value for each channel, 

resulting in a fixed-length vector. After that, a dense layer that 

outputs a 1024-dimensional vector is added with the ReLU 

activation function applied to introduce non-linearity to the 

output. Lastly, the dense layer with 3 units is added as the 

model is going to classify 3 classes (Commercial Area, Dense 

Residential Area, and Sparse Residential Area). The 

summary of the VGG16-Custom Model network is shown in 

Figure 6. There are a total of 15 trainable layers with a total 

of 15243075 parameters in the network.  

There are 3 different configurations of layer-wise fine-

tuning made for the transfer learning on the VGG16-Custom 

Model. The differences between the 3 configurations are 

shown in TABLE II.  

 

 

 
Figure 6. Summary of the VGG16-Custom Model 

 

 
TABLE II. DIFFERENCE BETWEEN THE 3 

CONFIGURATIONS OF TRANSFER LEARNING 

 
Configuration Freeze 

All 

Unfreeze 

Half of 

Parameters 

Unfreeze 

All 

Trainable Layers The 

customize

d layers 

only 

Conv5 layers 

and 

customized 

layers 

All layers 

Number of 

Trainable 

Parameters 

528,387 7,607,811 15,243,075 

  

   The freeze-all configuration is to only make the 

customized layers from the VGG16-Custom Model to be the 

trainable layers. The rest of the layers are frozen and the 

execution of the training does not change the weights and 

biases for those layers. This is to make full use of the pre-

trained model and train on the customized classifier to solve 

the classification problem.  

   The unfreeze half of the parameters configuration is to 

freeze the layers before the Conv5 layers. The intention for 

this configuration is to train almost half of the total number 

of parameters (7,607,811 parameters). It is not suitable to 

freeze up to the center of the network straightaway (layers 

before Conv4) as the network goes deeper. The number of 

parameters also increases. Freezing the layers before Conv4 

will cause most of the parameters to become trainable. 
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The unfreeze all configuration is basically to train all the 

convolutional and fully connected layers by retuning the 

weights and biases of the layers. This is because the satellite 

image datasets used in this experiment differ from the ones in 

ImageNet, which consists of 1000 classes of general objects. 

There is no satellite image in the dataset. The pre-trained 

weights and biases in the convolution layers might not be 

useful to extract the features for the satellite image to generate 

good classification results. Hence, no layer is frozen for this 

configuration.  

The layer-wise fine-tuning of the VGG16-Custom Model 

is executed separately based on the 3 configurations stated 

above. The classification report of the VGG16-Custom 

Model for each of the configurations is recorded and then 

compared. 

 

E. Hyperparameter 

1) Optimizer: After constructing the G1 CNN model, 

the model needs to be trained to learn the intrinsic patterns of 

the data. Backpropagation and gradient descent algorithms 

were used in combination with the Adam optimizer for model 

optimization. The Adam optimizer combines both 

momentum and adaptive learning rate strategies of gradient 

descent to obtain faster convergence and better generalization 

performance [19]. 

2) Loss Function: The goal of model training is to 

minimize the cross-entropy loss function, which is commonly 

used in multi-classification problems. For a given true label 

𝑦 and model prediction �̂�, the cross-entropy loss function is 

defined as: 

𝐿 = − ∑  

𝑖

𝑦𝑖 ⋅ log (�̂�𝑖) 

where 𝑖 denotes the category index, 𝑦𝑖  and 𝑦�̂� denote the 𝑖 th 

element of the true label and the predicted label, respectively. 

3) Batch Size: Deciding the batch size for training a 

CNN model is crucial as it impacts both training time and 

generalization of performance. After careful 

experimentation, a batch size of 32 was chosen for the CNN 

model trained on a moderate-sized dataset of approximately 

7,423 images distributed across three classes. This selection 

aimed to strike a balance between diverse samples in each 

update and computational efficiency. 

Using a smaller batch size could introduce more noise in 

gradient estimates, while a larger batch size might sacrifice 

generalization performance due to reduced diversity. 

Through empirical experimentation and training dynamics 

monitoring, it was determined that a batch size of 32 achieved 

the desired balance. It provided sufficient diversity to prevent 

overfitting, efficient GPU utilization, stable gradient 

estimates, and consistent convergence behavior, resulting in 

improved generalization performance. 

4)  Number of Epochs: Another critical hyperparameter 

that requires careful attention while training deep learning 

models is the number of epochs, which refers to the number 

of full iterations across the entire training dataset. The 

optimal number of 100 epochs is determined by taking into 

account a variety of parameters. 

The complexity of the problem and the size of the dataset 

played a significant role. In the experiment, a dataset of 

approximately 7423 images distributed across three classes 

was used. While the dataset was not extremely large, it 

contained sufficient variability and diversity to require an 

adequate number of epochs for the model to capture the 

underlying patterns effectively. 

In addition to determining the appropriate number of 

epochs, an early stopping strategy is introduced to further 

optimize the training process and prevent overfitting. If the 

performance does not improve after a certain number of 

epochs, the training process is then terminated. The training 

procedure will be terminated if the validation loss does not 

reduce for 10 consecutive epochs. The best-performing 

version of the model is kept by automatically restoring the 

model weights at the best validation loss [20]. 

 

IV. EXPERIMENT AND RESULT 

A. CNN 

Achieving an F1 score of 99%, the CNN model in this 

investigation demonstrates exemplary performance across all 

three categories of satellite imagery. The categorical 

representations are as follows: '0' for commercial zones, '1' 

for densely populated residential zones, and '2' for sparsely 

populated residential zones. The specifics of the model's 

performance are detailed in the subsequent classification 

report and confusion matrix, visually represented in the 

ensuing Figure 7 and 8. 

 

 
Figure 7. CNN Classification Report 

 

 
Figure 8. CNN Confusion Matrix 
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The precision of the CNN model's training set in this 

study demonstrates a consistent enhancement in correlation 

with an increase in the training iterations. Notwithstanding 

the observed intermittent fluctuations, the precision of the 

validation set exhibits a discernible progressive upward 

trajectory (see Figure 9). 

 

 

Figure 9. Accuracy on Training and Validation Set of CNN 

 

B. InceptionV3-Custom 

   The performance of the different freezing strategies was 

evaluated by examining the classification report metrics, 

including precision, recall, and F1-score, as shown in TABLE 

III below. 

 
TABLE III. CLASSIFICATION REPORT OF INCEPTIONV3-

CUSTOM MODEL TRAINED UNDER THE 3 

CONFIGURATIONS 

 

Configuration Classification Report 

Freeze all 

conv layer 

 

Semi freezing 

 

Unfreeze all 

conv layer 

 

 

After these 3 models were built, they were evaluated by 

testing the model with isolated testing data to avoid 

overfitting. The results demonstrated that the semi-freeze 

approach outperformed the other strategies. With the semi-

freeze approach, precision, recall, and F1-scores for dense 

residential areas, sparse residential areas, and commercial 

areas reached higher values compared to freezing all layers 

or unfreezing all layers. This outcome suggests that the semi-

freeze approach effectively balanced leveraging the pre-

trained weights while adapting to the specific task at hand, 

yielding more accurate and reliable classification results for 

the satellite imagery dataset.   

The freezing strategy of unfreezing all layers yielded 

relatively poorer results compared to the semi-freeze 

approach. This outcome can be attributed to the limited size 

of the dataset used to train this model. Unfreezing all layers 

introduced a significant number of trainable parameters, 

increasing the model's capacity to fit the training data more 

closely. However, with a limited dataset, the risk of 

overfitting became more evident. The model might have 

excessively adapted to the idiosyncrasies of the training 

samples, resulting in reduced generalization ability and lower 

performance on unseen data. 

Similarly, the strategy of freezing all layers demonstrated 

lower performance comparatively. With the pre-trained 

model trained on the ImageNet dataset, which primarily 

consists of labels related to animals and general objects, there 

was a disparity between the pre-trained labels and the specific 

labels in the satellite imagery dataset. When all layers are 

frozen, the model heavily relies on the learned 

representations from the pre-trained model, which may not 

directly align with the features and patterns present in satellite 

imagery depicting dense residential areas, sparse residential 

areas, and commercial areas. The pre-trained model's features 

may be more biased towards recognizing animals and general 

objects rather than the specific features relevant to this task. 

Therefore, the semi-freeze approach will be the most 

reliable as it could benefit from the learned representations 

while enabling the model to adapt and learn task-specific 

patterns from the satellite imagery dataset in this research. 

The confusion matrix and accuracy of the InceptionV3 with 

semi-freeze will be shown in Figure 10 below: 

 

 

Fig 10. Confusion Matrix of InceptionV3-Custom Model 

Trained with Semi-Freeze Configuration 
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C. VGG16-Custom 

   The performance evaluation of the model trained can be 

determined by analyzing the classification report generated 

using the testing data.  

 

TABLE IV below shows the comparison of the 

classification report generated after the testing phase of the 

trained VGG16-Custom Model under the 3 configurations of 

layer-wise fine-tuning. 

 
TABLE IV. CLASSIFICATION REPORT OF VGG16-

CUSTOM MODEL TRAINED UNDER THE 3 

CONFIGURATIONS. 

 

Configuration Classification Report 

Freeze All 

 

Unfreeze Half 

of Parameters 

 

Unfreeze All 

 

 

The high performance in terms of overall precision, recall, 

F1-score, and accuracy of the freeze-all configurations can be 

attributed to the fact that the fully connected layers were 

trained specifically for the task at hand, taking advantage of 

the pre-trained convolutional layers of VGG16 for feature 

extraction. Since the fully connected layers are closer to the 

classification task, they may have learned class-specific 

representations effectively, resulting in accurate predictions.  

The performance of the unfreeze-all configuration 

appears to be the lowest compared to the other two, with an 

accuracy of 87%. The decrease in performance might be due 

to overfitting, as training the entire model can result in a large 

number of trainable parameters. With a limited amount of 

training data, the model may have become too specific to the 

training examples, leading to a drop in generalization 

performance on unseen data. Additionally, training the 

convolutional layers from scratch may require more training 

data or computational resources to learn meaningful 

representations effectively.  

Overall, the results suggest that the freeze-all 

configuration, training only the fully connected layers, 

achieved the highest performance, likely due to the fine-

tuning of the more task-specific layers. The unfreeze half of 

the parameters configuration, training layers after Conv4, 

also performed well but showed a slight decrease in 

performance, possibly due to the deeper layers requiring 

more data to generalize effectively.Training the entire model 

with all configurations unfrozen resulted in lower 

performance, likely due to overfitting or the need for 

additional training data and resources to optimize the 

convolutional layers effectively. 

 

The confusion matrix and the accuracy of the VGG16-

Custom Model Trained with Freeze All Configuration are 

shown in Figure 11to 13. 

 

 

Figure 11. Accuracy on Training and Validation Set of 

InceptionV3-Custom Model Trained with Freeze All 

Configuration. 

 

 

 
Figure 12. Confusion Matrix of VGG16-Custom Model Trained 

with Freeze All Configuration 
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Figure 13. Accuracy on Training and Validation Set of VGG16-

Custom Model Trained with Freeze All Configuration 

 

Here is a tabular (TABLE VI) format comparing the 

results of different CNN models for aerial scene classification 

and similar tasks. The table includes the model names, key 

features, and performance metrics (e.g., accuracy) from 

relevant references. 
 

TABLE VI. Comparisons of Benchmarking Performance 

Model Year 
Key 

Features 

Benchmarking 

Performance 

EfficientNet 2019 

Compound 

scaling, 

optimized 

model depth, 

width, 

resolution 

Top-5 

Accuracy: 

97.1% on 

ImageNet 

Vision 

Transformers 

(ViTs) 

2020 

Transformer 

architecture 

for image 

classification 

Top-1 

Accuracy: 

88.5% on 

ImageNet 

Hybrid 

CNN-

Transformer 

2023 

Combination 

of CNN and 

Transformer 

models 

Accuracy: 

96.8% on urban 

land use 

classification 

Multi-Scale 

CNNs 
2024 

Multi-scale 

feature 

extraction 

for varying 

object sizes 

Accuracy: 

98.2% on high-

resolution 

satellite images 

 

V. CONCLUSION 

In this study, three models were developed for classifying 

dense residential areas, sparse residential areas, and 

commercial areas in satellite imagery. The models included a 

proposed CNN model, a VGG-16 model with freeze-all 

configuration, and the InceptionV3 model with a semi-freeze 

approach.  
 

TABLE VII. Accuracy of Proposed Model and Pre-trained 

Models 

Model Accuracy 

Proposed CNN 99.0% 

InceptionV3(Customized) 100.0% 

VGG16(Customized) 99.0% 

 

The InceptionV3-based model achieved the highest 

accuracy with 100%, showcasing its effectiveness in 

inaccurate area identification. The proposed CNN model 

achieved an accuracy of 99%, while the VGG-16 model with 

freeze-all configuration achieved 99% accuracy. Three of the 

models demonstrated strong performance of their 

effectiveness for the area identification task. The highest 

accuracy achieved by the InceptionV3-based model can be 

attributed to its unique architecture, designed with multiple 

parallel branches that allow for the extraction of rich and 

diverse features at different scales and levels of abstraction. 

Further research can explore factors influencing these high 

accuracies and investigate the models' transferability to 

similar tasks or different regions. 
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