
MJoSHT Vol. 10, No. 1 (2024) 39

[mjosht.usim.edu.my]

Article

SQL Injection Detection using Machine Learning: A Review

Mohammed A M Oudah and Mohd Fadzli Marhusin

Cyber Security and Systems (CSS) Research Unit, Faculty of Sciences and Technology,

Universiti Sains Islam Malaysia, 71800 Nilai, Negeri Sembilan, Malaysia.

Correspondence should be addressed to:

Mohd Fadzli Marhusin; fadzli@usim.edu.my

Article Info

Article history:

Received: 5 July 2023

Accepted: 15 February 2024

Published:5 April 2024
Academic Editor:

Shahrina Ismail

Malaysian Journal of Science, Health &

Technology

MJoSHT2024, Volume 10, Issue No. 1

eISSN: 2601-0003

https://doi.org/10.33102/mjosht.v10i1.368

Copyright © 2024 Mohammed Oudah and

Mohd Fadzli Marhusin

This is an open-access article distributed

under the Creative Commons Attribution

4.0 International License, which permits

unrestricted use, distribution, and

reproduction in any medium, provided the

original work is properly cited.

Abstract— SQL injection attacks are critical security vulnerability exploitation in web applications, posing risks to data, if successfully

executed, allowing attackers to gain unauthorised access to sensitive data. Due to the absence of a standardised structure, traditional

signature-based detection methods face challenges in effectively detecting SQL injection attacks. To overcome this challenge, machine

learning (ML) algorithms have emerged as a promising approach for detecting SQL injection attacks. This paper presents a

comprehensive literature review on the utilisation of ML techniques for SQL injection detection. The review covers various aspects,

including dataset collection, feature extraction, training, and testing, with different ML algorithms. The studies included in the review

demonstrate high levels of accuracy in detecting attacks and reducing false positives.

Keywords— Cybersecurity; Machine Learning; SQL Injection Detection

I. INTRODUCTION

SQL injection (SQLI) attacks are a common type of web

application security vulnerability that can allow attackers to

execute malicious SQL statements and gain unauthorised

access to sensitive data. The increasing complexity of web

applications and the need for robust and effective security

measures make the use of robust techniques for detecting SQLI

attacks. According to OWASP, SQLI is one of the top 10 most

critical web application security risks. As shown in Fig.1, SQLI

was recognised as the first most critical risk in their 2017 Top

10 report, with an estimated frequency of roughly 25%. In 2021,

it drops to third place, with 94% of applications examined for

some sort of injection, with a maximum incidence rate of 19%

and an average incidence rate of 3.37 [1].

The lack of a standard structure for SQLI attacks makes it

difficult to develop traditional signature-based detection

methods that rely on predefined patterns or rules [26]. Machine

learning (ML) algorithms can overcome this challenge by

learning from patterns and relationships in the data, allowing

them to detect previously unknown SQLI attacks and adapt to

changes in attack techniques over time.

In this paper, our primary objective is to conduct an

extensive literature review, systematically comparing various

recent research studies that utilise ML algorithms to prevent

and detect SQLI attacks. We aim to critically evaluate the

feasibility and effectiveness of these algorithms as documented

in existing research rather than conducting new experiments.

Our goal is to synthesise this information to provide a detailed

MJoSHT Vol. 10, No. 1 (2024) 40

assessment and classification of different ML models based on

their performance in real-time SQLI attack detection and

prevention. This analysis will serve as a roadmap, highlighting

key findings and insights derived from previous research to

guide future studies and developments in this field.

This paper will provide valuable insights into the

effectiveness of using ML to detect SQLI attacks and

contribute to the field of web application security. This paper

will also compare the effectiveness and limitations of using

different ML models for SQLI detection and suggest directions

for future work in this area.

Fig. 1 SQLIA OWASP ranking in 2017 and 2021 [1]

II. SQL INJECTION OVERVIEW

SQLI is a type of security vulnerability that arises when user

input is not appropriately validated or sanitised before being

incorporated into dynamic SQL statements. This can occur in

any code that accepts user input to construct dynamic SQL

statements [2]. The primary goal of an SQLI attack is to gain

unauthorised access to a database or manipulate its data in

unintended ways.

A. How SQL Injection works

Developers can accidentally introduce SQLI vulnerabilities

into their applications when they use unfiltered user input in

their SQL statements [3]. This can allow an attacker to inject

malicious SQL code into the database and execute it,

potentially compromising sensitive information or taking over

the database.

By understanding the different layers in a web application

and how SQLI attacks occur, developers can take steps to

prevent these attacks and protect their web applications from

being compromised. Fig. 22 shows the layers of web

applications. In the presentation layer, the users interact with

the web application and send requests to the logic layer. The

logic layer contains the programming code that processes the

user input and generates dynamic SQL statements that are sent

to the storage layer for execution. Suppose the logic layer does

not properly validate or sanitise the user input. In that case, an

attacker can inject malicious SQL code into the dynamic SQL

statements, potentially compromising the database or sensitive

information stored in the database [4].

Fig. 2 Web application layers

B. SQL Injection Causes

. There are several common causes of SQLI attacks [5]:

• Inadequate input validation: Failure to validate user

input properly, allowing attackers to inject malicious

code into a query.

• Unparameterised queries: Unparameterised queries are

used where user input is inserted directly into an SQL

query, allowing attackers to inject malicious code into

the query.

• Degree of granted user privileges more than required:

Granting excessive privileges to users or roles, allowing

them to perform actions that are not necessary for their

job functions, increasing the risk of SQLI attacks.

C. SQL Injection Classifications

SQLIA is classified into two main types, classical and

advanced SQLIA:

1) Classical SQL injection attacks: There are several types

of classical SQLI attacks, as listed in Table 1, such as tautology

attacks, union queries, blind SQLI, piggy-backed queries,

illegal or logically incorrect queries, and alternate encoding.

Each of these attack types involves different methods of

exploiting the application's input validation process and can

lead to severe consequences.

2) Advanced SQL injection attacks refer to modern

techniques used to bypass traditional detection and prevention

methods [6]. These attacks can be difficult to detect and prevent,

as they often involve more complex and sophisticated

techniques than classical attacks. Some examples include Fast

Flux and Compounded SQLI Attacks.

user

Presentation
Layer

Logic Layer

Storage Layer

MJoSHT Vol. 10, No. 1 (2024) 41

TABLE I . CLASSIC SQL INJECTION ATTACK EXAMPLES

SQLIA Type
SQL injection attack

example

Cause

Tautology

attacks

SELECT * FROM users

WHERE username = ''

OR '1'='1' AND
password =

'<password>'

The injected condition

(OR '1'='1') is always true,
which overrides other

conditions in the SQL

query, bypassing security
checks.

Union query

SELECT name, email
FROM users WHERE

id = ' UNION SELECT

cc_number, cc_expiry

FROM credit_cards

WHERE user_id = 1 --'

Appends an additional

query (UNION …) to the

original query. Retrieve
data from a different table

(credit_cards) that was not

intended to be accessed in
the original query.

Blind SQL
injection

SELECT * FROM

products WHERE name

LIKE '% or 1=1-- %';

Inserts a condition (or

1=1--) that is always true
into the WHERE clause.

This alters the query's

logic, forcing it to return
all entries in the table. The

-- comments out the rest of

the SQL statement,
ensuring that only the

injected part is executed.

Piggy-backed
query

SELECT * FROM users
WHERE username = ''

OR 1=1; DROP TABLE

users --' AND password

= '<password>'

Adds an additional
malicious query (DROP

TABLE users) after the

legitimate one, using a
semicolon to separate

them. The injected OR

1=1 ensures the first query

always returns true, and

the -- comments out the

rest of the legitimate
query.

Illegal/logically

incorrect

queries

' OR 1=1; SELECT

credit_card_number
FROM users WHERE

username =

'<username>' AND
password =

'<password>'

Injects an always-true

condition (' OR 1=1;) to

bypass authentication
checks, followed by a

separate query to extract

sensitive data (SELECT
credit_card_number

FROM users). The

semicolon separates the
injected query from the

original, allowing the

execution of an additional,
unauthorised query that

compromises data
security.

Alternate

encoding

' OR 1=1; SELECT *

FROM users WHERE
username =

0x61646D696E AND

password =
0x61646D696E --

Uses hexadecimal

encoding to disguise the

input, bypassing filters
that may only recognise

standard alphanumeric

input. This type of attack
can bypass security

measures that are not

designed to decode and
inspect alternate

encodings.

III. MACHINE LEARNING

ML is one of the disciplines of artificial intelligence that

enables machines to employ intelligent software to learn how

to do tasks, giving machines the capacity to learn and decide

on new tasks. It aims to develop algorithms and models that

enable computers to learn and improve from experience

without being explicitly programmed. This is accomplished by

training ML models on large datasets and using statistical and

mathematical techniques to identify patterns and relationships

within the data. Once trained, these models can be used to make

predictions and decisions based on new data without the need

for explicit programming for each specific case.

A. Machine Learning Classifications

ML is generally classified into four types: supervised and

unsupervised learning, semi-supervised learning, and

reinforcement learning.

• Unsupervised learning uses an unlabelled dataset to

identify patterns and anomalies in data. This method has

two categories: clustering, which groups data based on

patterns, and association, which uncovers relationships

between data sets. Association identifies a relationship

between two datasets; if A is discovered, then B must be

true.

• Supervised learning is a type of ML that uses a labelled

training dataset to learn the relationship between data

and the label. After that, it evaluates new data, called a

test dataset, to determine the accuracy of supervised

learning. The two categories of supervised learning are

classification, which predicts categorical values such as

true/false, colour, or type of disease, and regression,

which predicts numerical values such as pressure, price,

financial stocks, and other variables.

• Semi-supervised learning involves using both labelled

and unlabelled data in the training process. The goal of

semi-supervised learning is to build a classification

model using the unlabelled data first, then use the

labelled data for training to improve the model's

accuracy. It combines the benefits of supervised and

unsupervised learning methods and can be useful when

obtaining labelled data is difficult or expensive.

• Reinforcement learning involves using data obtained

through interactions with the environment to create

intelligent agents [7]. It includes model types such as

Temporal difference learning and Q learning.

B. Machine Learning Applications

ML algorithms are employed for a variety of tasks and are

currently prevalent in the fields of big data sciences, image

processing, and medical sciences [7]:

• Computer-Aided Diagnosis: ML pattern recognition

techniques support a wide range of image recognition

applications, including the diagnosis of various medical

conditions through the interpretation of various medical

images.

• Computer Vision: ML can help machines operate

discretionarily according to the situation by analysing

incoming photos for facial recognition, security

applications, and driverless autos.

MJoSHT Vol. 10, No. 1 (2024) 42

• Speech recognition uses ML to recognise spoken words

and translate them into text.

• Text mining: ML may impact unstructured data or text

to extract information that is valuable for a variety of

applications, including social media monitoring, spam

filtering, injection detection, business intelligence, and

national security.

• Malware and Spam mail filtering: ML algorithms can

learn patterns in large datasets of known malware or

spam and use this knowledge to identify and block new

instances of malicious software or unwanted emails as

proposed in [8].

C. Machine Learning for SQL injection detection

ML has become an increasingly popular approach for

various applications, including cybersecurity. The absence of a

standard structure for SQLI attacks has made it difficult to

develop effective traditional methods of signature-based

detection. However, ML algorithms can learn from patterns

and relationships in the data to identify benign or malicious

SQL queries in web requests. Different ML algorithms can be

utilised for this purpose, but the quantity and quality of training

and testing data remain a significant concern for most

classifiers. Despite these challenges, ML has shown promise in

improving the accuracy and efficiency of SQLI detection.

IV. DISCUSSION

This section aims to present a comprehensive overview of

recent research on SQLI detection using ML techniques.

Demilie & Deriba [9] presented a novel framework for

detecting SQLI attacks using various ML algorithms, including

supervised, unsupervised, and semi-supervised approaches.

Their proposed approach involved feature extraction,

preprocessing, and classification using diverse ML algorithms.

The authors used a dataset of over 54,000 pieces of data, with

70% used for training and 30% for testing. They collected the

data from weblogs, cookies, session usage, and HTTP request

files and divided it into genuine and malicious queries. The

hybrid approach, which combined artificial neural networks

and support vector machines, outperformed other ML

approaches, achieving high accuracy, precision, recall, and F1-

score. The authors also discussed the nature of SQLI attacks,

prevention and detection mechanisms, and proposed solutions

based on deep learning, ML, and hybrid techniques. Their

proposed framework is flexible and can be applied to different

protocols, including HTTP and HTTPS.

Krishnan et al. [10] propose a framework that uses ML

algorithms to detect SQLI attacks on the client side. The

authors use tokenisation as the text parsing method and

evaluate the performance of five different ML algorithms,

including Naive Bayes, Logistic Regression, SVM, CNN, and

Passive Aggressive Classifier. The results show that CNN

performs the best with an accuracy rate of 97%. In comparison,

Naive Bayes has a 95% accuracy rate, Logistic Regression has

a 92% accuracy rate, and SVM and Passive Aggressive

Classifiers have 79% accuracy rates. The authors conclude that

the proposed framework improves the detection of SQLI

attacks and enhances application security. The study highlights

the importance of using ML algorithms for detecting SQLI

attacks and provides insights into the effectiveness of different

algorithms in this context.

Hernawan et al. [11] proposed a system that combines two

methods, SQLI Free Secure (SQL-IF) and Naïve Bayes, to

prevent SQLI attacks. SQL-IF is a method that checks for the

presence of special characters, keywords, and Boolean in the

input data to detect SQLI attacks. The Naïve Bayes method was

used for probabilistic classification of the input data. The study

collected attack log data through a simulation laboratory and

conducted penetration testing on vulnerable web applications.

The hybrid approach using both methods in sequence produced

the highest accuracy value of 90% in preventing SQLI attacks.

However, it also resulted in longer load times for web pages

due to increased checks and arithmetic operations. The study

suggests that a small constant value and a large dataset can

increase the accuracy of the system. The proposed system

provides a new approach to preventing SQLI attacks and can

contribute to improving the security of web applications.

In their study, Khanuja et al. [12] focused on the

development of a system aimed at detecting SQLI and Cross-

Site Scripting vulnerabilities in web applications utilising ML

algorithms. Their system consists of four modules: Web

Crawler, SQLI detection, Cross Site Scripting detection, and

Report generation. To establish the relationship between

dependent and independent variables, the researchers

employed two ML algorithms, namely Logistic Regression and

Naïve Bayes Classifier, to create the most suitable model. The

proposed system identifies common vulnerabilities found in

web applications by scanning URL query parameters, forms,

and cookies on web pages, thereby generating a comprehensive

report highlighting the detected vulnerabilities. By using ML

algorithms, the study offers a novel approach to detecting

vulnerabilities, which could help improve the overall security

of web applications.

In [13] Pham et al. proposed a machine-learning model for

detecting SQLI attacks on the client side. The model consists

of five steps, including data preparation, splitting data into

training and testing sets, text parsing using tokenisation,

Natural Language Processing, and frequency measurement of

the occurrence of words. They evaluated their model using five

ML algorithms and measured the results using various metrics

such as Precision, Recall, F1-score, Weighted Average, and

Confusion Matrix Accuracy. The experimental results showed

that three out of the five tested algorithms, including Logistic

Regression, Random Forest, and Extreme Gradient Boosting,

achieved 100% accuracy. However, the proposed model

requires larger datasets to obtain reliable evaluation results.

In this study [14], Abdulmalik proposed a model to enhance

the effectiveness of SQLI attack detection using ML techniques

by combining Dynamic and Static Analysis. The model

comprises three phases: Dataset, Static and Dynamic Analysis,

and Model Construction. The Dataset phase involves inserting

a record consisting of only symbols in every table of the

database using a suggested algorithm. At the same time, a

program is employed in the CGI interface to monitor all input

queries. In the Static and Dynamic Analysis phase, semantic

features are extracted, while in the Model Construction phase,

ML algorithms such as Random Forest, Artificial Neural

Network, Support Vector Machine, and Logistic Regression

MJoSHT Vol. 10, No. 1 (2024) 43

are used to construct the model. Although the evaluation and

validation of the proposed model are still in progress, the

proposed method's performance will be evaluated based on

Detection Overhead and Error Rate using a tenfold approach.

In this paper, Morufu et al. [15] proposed a Naive Bayes-

based pattern recognition model for detecting and categorising

SQLI attack types. The model was trained and evaluated using

16,050 data instances that included both vulnerable and non-

vulnerable web pages. The evaluation was done using ML

algorithms, and the validation was performed using 10-fold

stratified cross-validation with 1-10 random seeds. The results

showed a high accuracy rate of 98% for detection and 99% for

categorisation. The model was compared to existing techniques

and was found to perform better.

Akinsola et al. [16] compared the performance of various

supervised learning classification algorithms for binary

classification using 10-fold cross-validation and hold-out

methods. The tested algorithms included Logistic Regression

(LRN), Stochastic Gradient Descent (SDG), Sequential

Minimal Optimisation (SMO), Bayes Network (BNK),

Instance-Based Learner (IBK), Multilayer Perceptron (MLP),

Naive Bayes (NBS), and J48. The study found that the optimal

algorithm cannot be chosen based on a single metric such as

accuracy. In both hold-out and cross-validation methods, SDG

and J48 performed equally well with 100% accuracy, followed

by LRN. IBK had the lowest conceivable running time to build

both at Hold-Out and 10-Fold Cross-Validation, with values of

0.16 seconds and 0.06 seconds, respectively, and NBS had the

next lowest total training time.

T.P. Latchoumi et al. [17] propose using the Support Vector

Machine (SVM) algorithm to prevent SQLI attacks in web

applications. The system trains the SVM algorithm with all

possible malicious expressions and generates a model that

predicts whether a new query contains any malicious

expressions. The attack signatures are identified as SQLIA

tokens and SQLIA positive symbols, while legitimate requests

take the form of expected data. The proposed system includes

an admin and user login page for registration, and the admin

can securely upload datasets for training. The paper also

describes an Android application for household services that

uses XML, Java, SQL, and Firebase connectivity. The

implementation of the application required overcoming

challenges in database connections, API design, and

synchronisation.

The paper by Kavitha et al. [18] proposes an unsupervised

machine-learning approach to detect SQLI attacks in web

applications using the K-Means clustering algorithm. The

system consists of three steps: the URL intercept engine,

context-free grammar for SQLI attacks, and pattern

classification through ML. The first level uses predefined

patterns created by context-free grammar, while the second

level clusters patterns and classifies them into one of those

clusters to avoid injection. The system is evaluated based on

accuracy, response time, and time complexity and can detect

three categories of SQLI attacks: boolean, piggy-backed, and

union attacks. If an attack pattern is detected, the system

prevents the query's execution.

In their paper, Oudah et al. [3] explore the effectiveness of

four ML models in detecting SQLI attacks using multi-

tokenisation levels. The proposed system involves data

preparation, feature extraction, dataset splitting, model

building, training, and testing. The study used a dataset of

37,093 records of web requests and implemented different

feature extraction levels such as word level, character level,

and N-gram level. The results revealed that Extreme Gradient

Boosting (EGB) had the highest recall and precision using

word-level feature extraction, while the SVM model achieved

the best accuracy using character-level feature extraction.

Naïve Bayes was the fastest model, taking six milliseconds to

train the classifier at the N-gram level and seven milliseconds

at the word level, followed by eight milliseconds at the

character level. The study encountered challenges in using

NLP for text preprocessing for SQLI detection and identifying

irrelevant text in the data that needed removal.

Alkhatami & Alzahrani [19] investigate the detection of

SQLI attacks using ML techniques, including K-Nearest

Neighbors, Multinomial Naive Bayes, Decision Tree, and

Support Vector Machine algorithms. The study focuses on

detecting SQLI attacks in cloud computing platforms, where

ML can offer superior detection methods compared to

traditional approaches. The authors use a dataset of SQL

queries and SQLI attack queries, which are preprocessed and

feature-extracted before being used to train the ML model. The

results demonstrate that the SVM algorithm achieves the

highest accuracy of 99.42%, followed by the Decision Tree

with an accuracy of 99.4%. In comparison, MNB and KNN

algorithms have accuracy values of 97.09% and 92.45%,

respectively. The proposed model achieves an average

accuracy of more than 99% with a low error rate.

Azman et al. [20] propose a signature-based SQLI detection

system that utilises ML techniques. The system is trained on a

dataset of benign and malicious web requests extracted from

access log files, and its performance is evaluated on a separate

testing dataset. The architecture of the proposed system

includes three main functions, namely extraction, training, and

detection. The access log file is extracted and divided into a

training set and a test set. The training set is used to train the

detector to create a knowledge base, which is then utilised to

classify the test set into benign or malicious web requests. The

tool extracts the URLs and queries from the access log file and

converts them into sets of signatures for training and testing.

The experimental results reveal high detection accuracy for the

testing dataset, with a few false positives due to an inadequate

number of signatures in the training set.

In Farooq's paper [21], a model is proposed to detect SQLI

attacks, which exploit database vulnerabilities. The model

comprises four stages: dataset collection of SQLI attack queries,

feature extraction and selection using tokenisation, training

with 70% of the dataset, and testing with the remaining 30%.

The study uses a manually collected labelled dataset of 35,198

queries categorised into normal SQL queries, SQLI attack

queries, and plain text with 21 features. The proposed model

employs ensemble learning algorithms, including Gradient

Boosting Machine, Adaptive Boosting, Extended Gradient

Boosting Machine, and Light Gradient Boosting Machine. The

model achieves over 99% average accuracy in detecting SQLI

attacks with minimal error rate, with the best accuracy being

0.993371 using a Light Gradient Boosting Machine. The

proposed model is efficient in distinguishing SQLI attacks

MJoSHT Vol. 10, No. 1 (2024) 44

from normal SQL queries and plain text, making it suitable for

real-world detection systems.

Mishra [22] used the Naïve Bayes ML approach for

detecting SQLI attacks. She explained that this approach is

simple to implement, requires fewer computational resources,

and can be trained even on small datasets. However, it has the

drawback of failing when a new type of SQLI is encountered

for the first time. To address this, Mishra employed an

ensemble learning technique to combine multiple models, each

with its strengths and weaknesses, to reduce bias error and

variance error and improve the model's accuracy and

generalisation ability. Mishra trained her model on a dataset

consisting of 6000 SQLI examples, including both plain text

and SQLI data. To test the model's performance, the researcher

used an open-source tool called Libinjection to generate

additional SQLI examples. Mishra used tokenisation to

preprocess the text-based dataset and performed feature

extraction using the G-Test score for all token values. The

resulting model achieved higher accuracy than the Naïve Bayes

classifier but required more computational resources due to the

use of a gradient-boosting classifier.

Triloka et al., in their paper [23], tested five algorithms,

including Naïve Bayes, Logistic Regression, Gradient

Boosting, K-Nearest Neighbor, and Support Vector Machine,

to detect SQLI attacks. The Support Vector Machine had the

highest level of accurate detection, with a 99.77% detection

accuracy and 0.00100 microseconds per query time. The study

used natural language processing to increase detection

accuracy. The researchers carried out five stages in producing

the detection method, including data preparation,

preprocessing and modelling, feature engineering, data training,

and testing. The SVM algorithm had the highest level of

accuracy, which was 0.9977 and proved reliable in detecting

SQLI attacks. The optimisation stage increased the accuracy

rate of SVM from 0.89 to 0.9977 with a margin of 6.5. SVM

was proven reliable in detecting SQLI attacks.

Uwagbole et al. [4] proposed a technique that utilises

predictive analytics in big data to detect SQLI attacks in web

requests. They built a dataset by extracting known attack

patterns and trained a Two-Class Support Vector Machine

(TCSVM) using supervised learning to classify requests. The

injection point is identified after the WHERE clause in the SQL

query. The technique achieved an accuracy of 0.986, precision

of 0.974, recall of 0.997, and F1 Score of 0.985. The trained

classifier can be deployed as a web service that is consumed by

a custom .NET application implementing a web proxy API to

intercept and accurately predict SQLIA in web requests,

preventing malicious requests from reaching the database. The

approach was tested on a web application, and empirical

evaluations were presented in Confusion Matrix (CM) and

Receiver Operating Curve (ROC).

In this paper [8], Matin and Rahardjo propose an

architecture for detecting malware using honeypots and ML.

The proposed architecture consists of network components,

routers, honeypots, data analysis, and a real system. Honeypots

capture traffic packets and store them on an artificial server for

analysis. The data analysis module uses supervised ML

algorithms, including decision trees and support vector

machines (SVM), to classify the captured packets as malware

or benign. The architecture also includes a retraining process

to improve malware detection accuracy. The authors used the

EMBER dataset [24] and conducted cross-validation tests with

a k-fold validation of 10 to evaluate the classifier algorithm's

performance.

Wang and Wang [25] propose a detection method for SQLI

attacks based on the improved TFIDF algorithm and ML

classifiers (SVM, KNN, and DT). The method analyses and

compares a large number of attacks and normal SQL

statements, summarising the characteristics of SQL statements

and vectorising the text. The improved TFIDF algorithm is

used in the data preprocessing stage, and three different

classifiers are used in the classification stage. The results show

that the improved TFIDF algorithm combined with SVM has a

higher accuracy rate and a lower false alarm rate. The proposed

method solves the problem of low detection accuracy when the

number of sensitive and insensitive words is similar. The SVM

algorithm has the best classification effect among the three

classifiers tested.

Overall, the reviewed studies have employed various ML

models with distinct data preparation and text processing

techniques. Fig. 3 depicts the frequency of each machine-

learning model used in these papers.

TABLE II serves as a reference guide for summarising the

reviewed papers, including the techniques used, publication

dates, and limitations of each approach. It can be a valuable

resource for researchers and practitioners working on the

detection of SQLI attacks using ML. TABLE III provides a

comprehensive summary of the evaluation metrics for each

reviewed paper, including the ML models used, datasets

utilised, and the accuracy, precision, and recall metrics for each

model's performance evaluation in detecting SQLI attacks.

Together, these tables offer an overall understanding of the

various techniques and their effectiveness in detecting SQLI

attacks using ML.

Fig. 3 Frequency of ML models used in reviewed papers

0

5

10

15

ML Model

Used ML models

SVM NB DT KNN LR RF EGB CNN GB

MJoSHT Vol. 10, No. 1 (2024) 45

TABLE II

SUMMARY OF OTHER WORKS EVALUATION

Author(s)
Publish

Year
Used Technique Limitation(s)

1.
Demilie &

Deriba [9]
2022

The hybrid approach combines ANN, SVM,

NB, DT, and RF

The proposed system is limited to its dependence on the

specific characteristics of the target system

2.
Krishnan et al.

[10]
2021

Five machine learning algorithms: NB, LR,

SVM, CNN, and PAC

found that the Naive Bayes and SVM classifiers have
relatively low accuracy rates compared to the other classifiers

tested, which may limit their usefulness in certain applications

3.
Hernawan et al.

[11]
2020

A combination of the SQLI Free Secure (SQL-

IF) method and the Naïve Bayes model

The study only evaluates the proposed approach in a limited

number of vulnerable web applications, so the results may not
be generalisable to all web applications.

The longer average load times for web pages due to increased

checks and arithmetic operations may negatively impact user
experience and website performance.

4.
Khanuja et al.

[12]
2021

Utilised two Machine Learning algorithms, LR

and NB Classifier

The proposed system may not detect all vulnerabilities present
in a web application, as vulnerabilities may exist in areas that

are not referenced in collected URLs.

5. Pham et al. [13] 2020
The use of five machine learning models are

NB, SVM, DT, LR, and EGB

The proposed model should be tested with larger datasets to
improve the reliability of the results. It also did not mention

how to deal with new types of attacks and what types can be

detected.

6. Abdulmalik [14] 2021

Used four different machine learning

algorithms: Random Forest (RF), ANN, SVM,

and LR.

The paper did not present the results of this approach.

Moreover, the models may not be capable of detecting unseen
attacks with new semantic features that were not included in

the training datasets.

7.
Morufu et al.

[15]
2018 Naive Bayes-based classifier

The model is evaluated only on a single dataset of 16,050

instances, which may not be representative of all possible

scenarios. Thus, the generalizability of the model to other
datasets is uncertain.

8.
Akinsola et al.

[16]
2020

Various ML models included LR, Stochastic

Gradient Descent (SDG), Sequential Minimal
Optimisation (SMO), Bayes Network (BNK),

Instance-Based Learner (IBK), Multilayer

Perceptron (MLP), Naïve Bayes (NB), and
J48.

Compared to the performance of various supervised learning

algorithms for SQLI detection, the study did not consider other

factors, such as the size and diversity of the datasets, the
complexity of the queries, or the impact of false positives and

false negatives.

9.
Latchoumi et al.

[17]
2020

The attack signatures are identified as SQLIA

tokens and SQLIA positive symbols, while
legitimate requests take the form of expected

data, and SVM is used to classify user requests

in real-time.

The evaluation of the SVM algorithm is limited to testing on

a single dataset. The system implementation is also limited to
an Android application for household services, and it is

unclear how well it would perform in other contexts or

applications.

10
Kavitha et al.

[18]
2021

An unsupervised machine learning approach

that uses the K-Means clustering algorithm to
detect SQLIA

The evaluation is conducted on a limited number of SQLI

attacks, and it is unclear how the proposed system would
perform on a larger and more diverse dataset.

11. Oudah et al. [3] 2022
Applied four ML algorithms using different
feature extraction TF-IDF levels

More machine learning models should be compared with more
feature extraction techniques.

12.
Alkhatami,
Alzahrani [19]

2022

Focuses on detecting SQLI attacks in cloud

computing platforms using K-NN, NB, DT,

and SVM algorithms.

The study's scope is limited to detecting SQLI attacks in cloud

computing platforms, and therefore, the results may not apply

to other types of web applications.

13.
Azman et al.

[20]
2021

An updated Knowledge Base using machine

learning. They used the Boyer’s Moore string

matching algorithm to compare malicious
features in log strings to detect injections.

The paper's lack of clarity on the specific ML algorithms used

and the relatively small size of the tested datasets are

limitations. Additionally, caution should be exercised when
examining user log files as they may impact server

responsiveness. An accuracy of 100% could indicate

overfitting, which should be considered when interpreting the
results.

MJoSHT Vol. 10, No. 1 (2024) 46

Author(s)
Publish

Year
Used Technique Limitation(s)

14. Farooq [21] 2021

The model uses ensemble learning algorithms,

specifically Gradient Boosting Machine,

Adaptive Boosting, Extended Gradient
Boosting Machine, and Light Gradient

Boosting.

The use of a manually collected dataset may not accurately

reflect all possible scenarios. Although the proposed model
exhibited high accuracy on the testing dataset, it remains

uncertain whether the model is overly specialised to the

particular dataset employed in the study, raising the possibility
of overfitting.

15. Mishra [22] 2019
Used ensemble ML Gradient Boosting

algorithm.

Ensemble Learning takes a longer time in the learning phase
but gives better learning results. Also, the GB classifier

achieves better accuracy than the NB classifier, but it needs

more computational resources.

16.
Triloka, Hartono

[23]
2022

Compared the use of five algorithms,

including NB, LR, GB, K-NN, and SVM in
SQLI detection

It only evaluates the proposed approach in a limited number

of vulnerable web applications, so the results may not be
generalisable to all web applications.

17
Uwagbole et al.

[4]
2017

A web proxy API system that intercepts

requests and checks user requests using a
trained SVM classifier

The proposed technique is tailored to a specific web

application and database system, which limits its
generalizability to other systems.

18
Matin &

Rahardjo [8]
2019

Proposed to use ML SVM and DT models

integrated with honeypot to detect malware

attacks based on malware features and
behaviours.

The paper just mentioned the architecture of the proposed

approach and did not show experiment results.

19
Wang & Wang

[25]
2022

Used honeypots and analysed them using

machine learning algorithms such as Decision
Tree and Support Vector Machine (SVM).

The small dataset used may not represent all possible SQLI
attacks and could limit the generalizability of the proposed

detection method. Additionally, the architecture of the

proposed approach was not presented.

TABLE III

SUMMARY OF OTHER WORKS EVALUATION

Ref. ML Algorithm(s)
Dataset

Size

Evaluation

Accuracy Precision Recall

[9]

NB

54, 306

87.2 0.875 0.863

DT 94.8 0.917 0.908

SVM 97.3 0.964 0.956

RF 93.4 0.943 0.930

ANN 98.7 0.988 0.991

Hybrid 99.4 0.992 0.994

[10]

NB

*

95 0.85 0.98

LR 92 0.97 0.76

CNN 97 0.92 0.96

SVM 79 1.0 0.20

Passive Aggressive 79 1.0 0.20

[11] NB 250 90 * *

[12]
LR

92 * * *
NB

[13]

NB

1,483

77 0.71 0.46

LR 100 1.0 1.0

SVM 57 0.57 0.0

RF 100 1.0 1.0

EGB 100 1.0 1.0

[14]
RF

*
* * *

ANN * * *

MJoSHT Vol. 10, No. 1 (2024) 47

Ref. ML Algorithm(s)
Dataset

Size

Evaluation

Accuracy Precision Recall

SVM * * *

LR * * *

[15] NB 16,050 98 * *

[16]

10-Fold Cross-

Validation
Holdout-70

LR * 99.02 99.99 * *

Stochastic Gradient Descent (SDG) * 99.99 100 * *

Sequential Minimal Optimisation (SMO) * 99.98 99.98 * *

Bayes Network (BNK) * 99.70 99.70 * *

Instance-Based Learner (IBK) * 99.99 99.98 * *

Multilayer Perceptron (MLP) * * * * *

NB * 99.38 99.41 * *

J48 * 99.99 100 * *

[17] SVM * * * *

[18] K-Means clustering * * * *

[3]

NB

37,093

99.3 0.994 0.991

LC 99.2 0.994 0.988

SVM 99.7 0.997 0.995

EGB 99.5 0.996 0.992

[19]

K-NN

6,184

92.45 * *

NB 97.09 * *

DT 99.4 * *

SVM 99.42 * *

[20] *

58 93 * *

57 100 * *

58 100 * *

57 100 * *

56 100 * *

[21]

GB

35,198

99.1 0.991 0.990

Adaptive Boosting 99.1 0.990 0.989

EGB 99.2 0.991 0.990

Light Gradient Boosting 99.3 0.993 0.993

[22]
NB

3,707
92.8 * *

GB 97.4 * *

[23]

SVM

33,727

99.7 * *

K-NN 99.7 * *

LR 99.6 * *

GB 99.4 * *

NB 97.5 * *

 [4] SVM 479,000 98.6 0.974 0.997

MJoSHT Vol. 10, No. 1 (2024) 48

Ref. ML Algorithm(s)
Dataset

Size

Evaluation

Accuracy Precision Recall

[8]
SVM

900,000
* * *

DT * * *

[25]

SVM

3000

* 0.990 0.992

DT * 0.982 0.976

K-NN * 0.982 0.982

* Means not mentioned

The studies have employed different ML practices such as

dataset collection, feature extraction, training, and testing

with different ML algorithms.

Results show that these techniques have achieved high

levels of accuracy in detecting attacks and reducing false

positives. The SVM algorithm is the most effective in

detecting SQLI attacks, while Naïve Bayes and Ensemble

Learning techniques have also been shown to improve

detection accuracy.

V. CONCLUSIONS

In conclusion, this literature review provides an overview

of several studies on the use of ML for detecting SQLI attacks

and malware. The studies presented here use a variety of

approaches, including different algorithms, dataset sizes, and

feature selection techniques to achieve high detection

accuracy rates.

Upon reviewing these studies, we have identified three key

findings that hold significant implications for future research.

Firstly, the proposed techniques emphasise the importance of

dealing with passed SQLI queries in web requests,

particularly when system developers fail to handle requests

before accessing the system database because certain

techniques focus on identifying SQLI attack signatures or

predefined patterns in user logs to prevent injection requests.

So, by failing to handle these queries adequately, there is a

possibility that some threats could be passed through, posing

potential risks to the system's security. The second key finding

is that the size and quality of the training dataset significantly

impact the detection accuracy. It has been observed that a

larger and higher-quality dataset leads to an improved ability

to accurately identify SQLI attacks. Lastly, combining

multiple ML models has demonstrated an increase in

detection accuracy. By leveraging the strengths of various

models, researchers have achieved higher levels of accuracy

in detecting SQLI vulnerabilities.

As a way forward, it is imperative for future research to

target specific facets of SQLI attack detection and prevention.

This includes addressing evasion-centric attack patterns and

behaviour-related anomalies, refining approaches to manage

encoding-driven attacks, and augmenting dataset quality by

establishing accessible public repositories. Furthermore, the

exploration of hybrid machine-learning models and the

development of innovative, behaviour-centric techniques for

real-time detection is critical. Such concerted efforts will be

pivotal in advancing the field, keeping abreast of the

constantly evolving landscape of SQLI threats, and bolstering

the effectiveness of cybersecurity strategies.

CONFLICT OF INTEREST

The authors declare that there is no conflict of interest

regarding the publication of this paper.

ACKNOWLEDGEMENT

The authors acknowledged Fakulti Sains dan Teknologi,

Universiti Sains Islam Malaysia (USIM), for the facilities

provided.

REFERENCES

[1] "OWASP Top10 - 2021," 2021. [Online]. Available:

https://owasp.org/Top10/. [Accessed 14 May 2023].

[2] J. Clarke, SQL Injection Attacks and Defense, vol. 2, Waltham:
Elsevier, 2012.

[3] M. A. Oudah, M. F. Marhusin and A. Narzullaev, "SQL Injection

Detection Using Machine Learning with Different TF-IDF Feature
Extraction Approaches," in International Conference on Information

Systems and Intelligent Applications, Springer, Cham, 2022, pp. 707-

720. DOI: 10.1007/978-3-031-16865-9_57.
[4] S. Uwagbole, W. J. Buchanan and L. Fan, "Applied Machine Learning

Predictive Analytics to SQL Injection Attack Detection and

Prevention," in 3RD IEEE/IFIP Workshop on Security for Emerging
Distributed Network Technologies (DISSECT), Lisbon, Portugal, 2017.

DOI: 10.23919/INM.2017.7987433.

[5] M. Soni, A. Prakash, H. Mittal and M. Tiwari, "Honeypot Approach for
Web Security," International Journal of Engineering Research in

Computer Science and Engineering (IJERCSE), pp. 128-132, 19 April

2018.
[6] J. P. Singh, "Analysis of SQL Injection Detection Techniques,"

Theoretical and Applied Informatics, May 2016. DOI :

10.48550/arXiv.1605.02796.
[7] M. Mohammed, M. B. Khan and E. B. Mohammed Bashier, Machine

Learning: Algorithms and Applications, CRC Press, 2016. DOI:

10.1201/9781315371658.
[8] I. M. M. Matin and B. Rahardjo, "Malware Detection Using Honeypot

and Machine Learning," in The 7th International Conference on Cyber

and IT Service Management (CITSM 2019), Kuala Lumpur, 2019. DOI:
10.1109/CITSM47753.2019.8965419.

[9] W. B. Demilie and F. G. Deriba, "Detection and prevention of SQLI

attacks and developing compressive framework using machine learning
and hybrid techniques," Journal of Big Data, 2022.

DOI:10.15199/48.2022.07.30.
[10] S. A. Krishnan, A. N. Sabu, P. P Sajan and A. Sreedeep, "SQL Injection

Detection Using Machine Learning," Revista Gestão Inovação e

MJoSHT Vol. 10, No. 1 (2024) 49

Tecnologias, pp. 300-310, June 2021.

DOI:10.47059/revistageintec.v11i3.1939.

[11] F. Y. Hernawan, I. Hidayatulloh and I. F. Adam, "Hybrid method

integrating SQL-IF and Naïve Bayes for SQL injection attack

avoidance," Journal of Engineering and Applied Technology, vol. 1, no.

2, pp. 85-96, August 2020. DOI:10.21831/jeatech.v1i2.35497.
[12] H. K. Khanuja, P. Gadekar, S. Kulkarni, S. Kulkarni and S. More, "Web

Application Security Scanning using Machine Learning," International

Journal of Engineering Research in Computer Science and Engineering
(IJERCSE), vol. 8, no. 8, pp. 21-27, August 2021. DOI :

01.1617/vol8/iss8/pid37860

[13] B. A. Pham and V. H. Subburaj, "An Experimental setup for Detecting
SQLi Attacks using Machine Learning Algorithms," Journal of The

Colloquium for Information Systems Security Education, vol. 8, no. 1,

pp. 1-5, 2020. DOI:10.1007/978-3-031-28975-0_1.
[14] Y. Abdulmalik, "An Improved SQLInjection Attack Detection Model

Using Machine Learning Techniques," International Journal of

Innovative Computing, vol. 11, no. 1, pp. 53 - 57, 2021. DOI:
10.11113/ijic.v11n1.300.

[15] O. Morufu , R. A. Egigogo, I. Idris and R. G. Jimoh, "A Naïve Bayes

Based Pattern Recognition Model for Detection and Categorization of
Structured Query Language Injection Attack," International Journal of

Cyber-Security and Digital Forensics (IJCSDF), pp. 189-199, 2018.

DOI: 10.17781/P002396.
[16] J. E. T. Akinsola, O. Awodele and S. A. Idowu, "SQL Injection Attacks

Predictive Analytics Using Supervised Machine Learning Techniques,"

International Journal of Computer Applications Technology and
Research, vol. 9, no. 04, pp. 139-149, 2020.

DOI:10.7753/IJCATR0904.1004.

[17] T.P. Latchoumi, M. S. Reddy and K. Balamurugan, "Applied Machine
Learning Predictive Analytics to SQL Injection AttackDetection and

Prevention," European Journal of Molecular & Clinical Medicine, vol.

7, no. 02, pp. 3543-3553, 2020.
[18] M. Kavitha, V. Vennila, G. Padmapriya and A. R. Kannan, "Prevention

Of Sql Injection Attack Using Unsupervised Machine Learning

Approach," International Journal of Aquatic Science ISSN: 2008-8019
vol. 12, no. 03, pp. 1413-1424, 2021.

[19] J. M. Alkhatami and S. M. Alzahrani, "Detection Of Sql Injection

Attacks Using Machine Learning In Cloud Computing Platform,"

Journal of Theoretical and Applied Information Technology, E-ISSN:

1817-3195 vol. 100, no. 15, pp. 5446-5459, 15 August 2022.

[20] M. A. Azman, M. F. Marhusin and R. Sulaiman, "Machine Learning-

Based Technique to Detect SQL Injection Attack," Journal of Computer
Science, pp. 296-303, 2021. DOI:10.3844/jcssp.2021.296.303.

[21] U. Farooq, "Ensemble Machine Learning Approaches for Detection of

SQL Injection Attack," in International Conference on Convergence of
Smart Technologies IC2ST-2021, Pune, 2021. DOI: 10.31803/tg-

20210205101347.

[22] S. Mishra, "SQL Injection Detection Using Machine Learning, Master's
Projects," SJSU ScholarWorks, 5 May 2019.

[23] J. Triloka, H. Hartono and S. Sutedi, "Detection of SQL Injection

Attack Using Machine Learning Based on Natural Language
Processing," International Journal of Artificial Intelligence Research,

vol. 6, no. 2, December 2022. DOI: 10.29099/ijair.v6i2.355.

[24] H. S. Anderson and P. Roth, "EMBER: An Open Dataset for Training
Static PE Malware Machine Learning Models," 2018.

[25] M. Wang and C. Wang, "Detection of SQL Injection Attack Based on

Improved TFIDF Algorithm," in International Conference on
Mechanisms and Robotics (ICMAR 2022), Zhuhai, 2022. DOI:

10.1117/12.2652203.

[26] W.B. Demilie, F.G. Deriba, Detection and prevention of SQLI attacks
and developing compressive framework using machine learning and

hybrid techniques. J Big Data 9, 124 (2022). DOI: 10.1186/s40537-022-

00678-0.

