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Abstract— SQL injection attacks are critical security vulnerability exploitation in web applications, posing risks to data, if successfully 

executed, allowing attackers to gain unauthorised access to sensitive data. Due to the absence of a standardised structure, traditional 

signature-based detection methods face challenges in effectively detecting SQL injection attacks. To overcome this challenge, machine 

learning (ML) algorithms have emerged as a promising approach for detecting SQL injection attacks. This paper presents a 

comprehensive literature review on the utilisation of ML techniques for SQL injection detection. The review covers various aspects, 

including dataset collection, feature extraction, training, and testing, with different ML algorithms. The studies included in the review 

demonstrate high levels of accuracy in detecting attacks and reducing false positives. 
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I. INTRODUCTION 

SQL injection (SQLI) attacks are a common type of web 

application security vulnerability that can allow attackers to 

execute malicious SQL statements and gain unauthorised 

access to sensitive data. The increasing complexity of web 

applications and the need for robust and effective security 

measures make the use of robust techniques for detecting SQLI 

attacks. According to OWASP, SQLI is one of the top 10 most 

critical web application security risks. As shown in Fig.1, SQLI 

was recognised as the first most critical risk in their 2017 Top 

10 report, with an estimated frequency of roughly 25%. In 2021, 

it drops to third place, with 94% of applications examined for 

some sort of injection, with a maximum incidence rate of 19% 

and an average incidence rate of 3.37 [1]. 

The lack of a standard structure for SQLI attacks makes it 

difficult to develop traditional signature-based detection 

methods that rely on predefined patterns or rules [26]. Machine 

learning (ML) algorithms can overcome this challenge by 

learning from patterns and relationships in the data, allowing 

them to detect previously unknown SQLI attacks and adapt to 

changes in attack techniques over time. 

In this paper, our primary objective is to conduct an 

extensive literature review, systematically comparing various 

recent research studies that utilise ML algorithms to prevent 

and detect SQLI attacks. We aim to critically evaluate the 

feasibility and effectiveness of these algorithms as documented 

in existing research rather than conducting new experiments. 

Our goal is to synthesise this information to provide a detailed 
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assessment and classification of different ML models based on 

their performance in real-time SQLI attack detection and 

prevention. This analysis will serve as a roadmap, highlighting 

key findings and insights derived from previous research to 

guide future studies and developments in this field. 

This paper will provide valuable insights into the 

effectiveness of using ML to detect SQLI attacks and 

contribute to the field of web application security. This paper 

will also compare the effectiveness and limitations of using 

different ML models for SQLI detection and suggest directions 

for future work in this area. 
 

 
Fig. 1 SQLIA OWASP ranking in 2017 and 2021 [1] 

 

II. SQL INJECTION OVERVIEW 

SQLI is a type of security vulnerability that arises when user 

input is not appropriately validated or sanitised before being 

incorporated into dynamic SQL statements. This can occur in 

any code that accepts user input to construct dynamic SQL 

statements [2]. The primary goal of an SQLI attack is to gain 

unauthorised access to a database or manipulate its data in 

unintended ways. 

A. How SQL Injection works 

Developers can accidentally introduce SQLI vulnerabilities 

into their applications when they use unfiltered user input in 

their SQL statements [3]. This can allow an attacker to inject 

malicious SQL code into the database and execute it, 

potentially compromising sensitive information or taking over 

the database. 

By understanding the different layers in a web application 

and how SQLI attacks occur, developers can take steps to 

prevent these attacks and protect their web applications from 

being compromised. Fig. 22 shows the layers of web 

applications. In the presentation layer, the users interact with 

the web application and send requests to the logic layer. The 

logic layer contains the programming code that processes the 

user input and generates dynamic SQL statements that are sent 

to the storage layer for execution. Suppose the logic layer does 

not properly validate or sanitise the user input. In that case, an 

attacker can inject malicious SQL code into the dynamic SQL 

statements, potentially compromising the database or sensitive 

information stored in the database [4]. 

 
Fig. 2 Web application layers  

B. SQL Injection Causes 

. There are several common causes of SQLI attacks [5]: 

• Inadequate input validation: Failure to validate user 

input properly, allowing attackers to inject malicious 

code into a query. 

• Unparameterised queries: Unparameterised queries are 

used where user input is inserted directly into an SQL 

query, allowing attackers to inject malicious code into 

the query. 

• Degree of granted user privileges more than required: 

Granting excessive privileges to users or roles, allowing 

them to perform actions that are not necessary for their 

job functions, increasing the risk of SQLI attacks. 

C. SQL Injection Classifications 

SQLIA is classified into two main types, classical and 

advanced SQLIA: 

1)  Classical SQL injection attacks: There are several types 

of classical SQLI attacks, as listed in Table 1, such as tautology 

attacks, union queries, blind SQLI, piggy-backed queries, 

illegal or logically incorrect queries, and alternate encoding. 

Each of these attack types involves different methods of 

exploiting the application's input validation process and can 

lead to severe consequences.  

2)  Advanced SQL injection attacks refer to modern 

techniques used to bypass traditional detection and prevention 

methods [6]. These attacks can be difficult to detect and prevent, 

as they often involve more complex and sophisticated 

techniques than classical attacks. Some examples include Fast 

Flux and Compounded SQLI Attacks. 
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TABLE I . CLASSIC SQL INJECTION ATTACK EXAMPLES 

SQLIA Type 
SQL injection attack 

example 

 

Cause 

Tautology 

attacks 

SELECT * FROM users 

WHERE username = '' 

OR '1'='1' AND 
password = 

'<password>' 

The injected condition 

(OR '1'='1') is always true, 
which overrides other 

conditions in the SQL 

query, bypassing security 
checks. 

Union query 

SELECT name, email 
FROM users WHERE 

id = ' UNION SELECT 

cc_number, cc_expiry 

FROM credit_cards 

WHERE user_id = 1 --' 

Appends an additional 

query (UNION …) to the 

original query. Retrieve 
data from a different table 

(credit_cards) that was not 

intended to be accessed in 
the original query.   

Blind SQL 
injection 

SELECT * FROM 

products WHERE name 

LIKE '% or 1=1-- %'; 

Inserts a condition (or 

1=1--) that is always true 
into the WHERE clause. 

This alters the query's 

logic, forcing it to return 
all entries in the table. The 

-- comments out the rest of 

the SQL statement, 
ensuring that only the 

injected part is executed. 

Piggy-backed 
query 

SELECT * FROM users 
WHERE username = '' 

OR 1=1; DROP TABLE 

users --' AND password 

= '<password>' 

Adds an additional 
malicious query (DROP 

TABLE users) after the 

legitimate one, using a 
semicolon to separate 

them. The injected OR 

1=1 ensures the first query 

always returns true, and 

the -- comments out the 

rest of the legitimate 
query. 

Illegal/logically 

incorrect 

queries 

' OR 1=1; SELECT 

credit_card_number 
FROM users WHERE 

username = 

'<username>' AND 
password = 

'<password>' 

Injects an always-true 

condition (' OR 1=1;) to 

bypass authentication 
checks, followed by a 

separate query to extract 

sensitive data (SELECT 
credit_card_number 

FROM users). The 

semicolon separates the 
injected query from the 

original, allowing the 

execution of an additional, 
unauthorised query that 

compromises data 
security. 

Alternate 

encoding 

' OR 1=1; SELECT * 

FROM users WHERE 
username = 

0x61646D696E AND 

password = 
0x61646D696E -- 

Uses hexadecimal 

encoding to disguise the 

input, bypassing filters 
that may only recognise 

standard alphanumeric 

input. This type of attack 
can bypass security 

measures that are not 

designed to decode and 
inspect alternate 

encodings. 

 

 

III. MACHINE LEARNING 

ML is one of the disciplines of artificial intelligence that 

enables machines to employ intelligent software to learn how 

to do tasks, giving machines the capacity to learn and decide 

on new tasks. It aims to develop algorithms and models that 

enable computers to learn and improve from experience 

without being explicitly programmed. This is accomplished by 

training ML models on large datasets and using statistical and 

mathematical techniques to identify patterns and relationships 

within the data. Once trained, these models can be used to make 

predictions and decisions based on new data without the need 

for explicit programming for each specific case. 

A. Machine Learning Classifications 

ML is generally classified into four types: supervised and 

unsupervised learning, semi-supervised learning, and 

reinforcement learning. 

• Unsupervised learning uses an unlabelled dataset to 

identify patterns and anomalies in data. This method has 

two categories: clustering, which groups data based on 

patterns, and association, which uncovers relationships 

between data sets. Association identifies a relationship 

between two datasets; if A is discovered, then B must be 

true. 

• Supervised learning is a type of ML that uses a labelled 

training dataset to learn the relationship between data 

and the label. After that, it evaluates new data, called a 

test dataset, to determine the accuracy of supervised 

learning. The two categories of supervised learning are 

classification, which predicts categorical values such as 

true/false, colour, or type of disease, and regression, 

which predicts numerical values such as pressure, price, 

financial stocks, and other variables. 

• Semi-supervised learning involves using both labelled 

and unlabelled data in the training process. The goal of 

semi-supervised learning is to build a classification 

model using the unlabelled data first, then use the 

labelled data for training to improve the model's 

accuracy. It combines the benefits of supervised and 

unsupervised learning methods and can be useful when 

obtaining labelled data is difficult or expensive. 

• Reinforcement learning involves using data obtained 

through interactions with the environment to create 

intelligent agents [7]. It includes model types such as 

Temporal difference learning and Q learning. 

B. Machine Learning Applications  

ML algorithms are employed for a variety of tasks and are 

currently prevalent in the fields of big data sciences, image 

processing, and medical sciences [7]: 

• Computer-Aided Diagnosis: ML pattern recognition 

techniques support a wide range of image recognition 

applications, including the diagnosis of various medical 

conditions through the interpretation of various medical 

images. 

• Computer Vision: ML can help machines operate 

discretionarily according to the situation by analysing 

incoming photos for facial recognition, security 

applications, and driverless autos. 
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• Speech recognition uses ML to recognise spoken words 

and translate them into text. 

• Text mining: ML may impact unstructured data or text 

to extract information that is valuable for a variety of 

applications, including social media monitoring, spam 

filtering, injection detection, business intelligence, and 

national security.  

• Malware and Spam mail filtering: ML algorithms can 

learn patterns in large datasets of known malware or 

spam and use this knowledge to identify and block new 

instances of malicious software or unwanted emails as 

proposed in [8]. 

C. Machine Learning for SQL injection detection 

ML has become an increasingly popular approach for 

various applications, including cybersecurity. The absence of a 

standard structure for SQLI attacks has made it difficult to 

develop effective traditional methods of signature-based 

detection. However, ML algorithms can learn from patterns 

and relationships in the data to identify benign or malicious 

SQL queries in web requests. Different ML algorithms can be 

utilised for this purpose, but the quantity and quality of training 

and testing data remain a significant concern for most 

classifiers. Despite these challenges, ML has shown promise in 

improving the accuracy and efficiency of SQLI detection. 

 

IV. DISCUSSION 

This section aims to present a comprehensive overview of 

recent research on SQLI detection using ML techniques. 

Demilie & Deriba [9] presented a novel framework for 

detecting SQLI attacks using various ML algorithms, including 

supervised, unsupervised, and semi-supervised approaches. 

Their proposed approach involved feature extraction, 

preprocessing, and classification using diverse ML algorithms. 

The authors used a dataset of over 54,000 pieces of data, with 

70% used for training and 30% for testing. They collected the 

data from weblogs, cookies, session usage, and HTTP request 

files and divided it into genuine and malicious queries. The 

hybrid approach, which combined artificial neural networks 

and support vector machines, outperformed other ML 

approaches, achieving high accuracy, precision, recall, and F1-

score. The authors also discussed the nature of SQLI attacks, 

prevention and detection mechanisms, and proposed solutions 

based on deep learning, ML, and hybrid techniques. Their 

proposed framework is flexible and can be applied to different 

protocols, including HTTP and HTTPS. 

Krishnan et al. [10] propose a framework that uses ML 

algorithms to detect SQLI attacks on the client side. The 

authors use tokenisation as the text parsing method and 

evaluate the performance of five different ML algorithms, 

including Naive Bayes, Logistic Regression, SVM, CNN, and 

Passive Aggressive Classifier. The results show that CNN 

performs the best with an accuracy rate of 97%. In comparison, 

Naive Bayes has a 95% accuracy rate, Logistic Regression has 

a 92% accuracy rate, and SVM and Passive Aggressive 

Classifiers have 79% accuracy rates. The authors conclude that 

the proposed framework improves the detection of SQLI 

attacks and enhances application security. The study highlights 

the importance of using ML algorithms for detecting SQLI 

attacks and provides insights into the effectiveness of different 

algorithms in this context. 

Hernawan et al. [11] proposed a system that combines two 

methods, SQLI Free Secure (SQL-IF) and Naïve Bayes, to 

prevent SQLI attacks. SQL-IF is a method that checks for the 

presence of special characters, keywords, and Boolean in the 

input data to detect SQLI attacks. The Naïve Bayes method was 

used for probabilistic classification of the input data. The study 

collected attack log data through a simulation laboratory and 

conducted penetration testing on vulnerable web applications. 

The hybrid approach using both methods in sequence produced 

the highest accuracy value of 90% in preventing SQLI attacks. 

However, it also resulted in longer load times for web pages 

due to increased checks and arithmetic operations. The study 

suggests that a small constant value and a large dataset can 

increase the accuracy of the system. The proposed system 

provides a new approach to preventing SQLI attacks and can 

contribute to improving the security of web applications. 

In their study, Khanuja et al. [12] focused on the 

development of a system aimed at detecting SQLI and Cross-

Site Scripting vulnerabilities in web applications utilising ML 

algorithms. Their system consists of four modules: Web 

Crawler, SQLI detection, Cross Site Scripting detection, and 

Report generation. To establish the relationship between 

dependent and independent variables, the researchers 

employed two ML algorithms, namely Logistic Regression and 

Naïve Bayes Classifier, to create the most suitable model. The 

proposed system identifies common vulnerabilities found in 

web applications by scanning URL query parameters, forms, 

and cookies on web pages, thereby generating a comprehensive 

report highlighting the detected vulnerabilities. By using ML 

algorithms, the study offers a novel approach to detecting 

vulnerabilities, which could help improve the overall security 

of web applications. 

In [13] Pham et al. proposed a machine-learning model for 

detecting SQLI attacks on the client side. The model consists 

of five steps, including data preparation, splitting data into 

training and testing sets, text parsing using tokenisation, 

Natural Language Processing, and frequency measurement of 

the occurrence of words. They evaluated their model using five 

ML algorithms and measured the results using various metrics 

such as Precision, Recall, F1-score, Weighted Average, and 

Confusion Matrix Accuracy. The experimental results showed 

that three out of the five tested algorithms, including Logistic 

Regression, Random Forest, and Extreme Gradient Boosting, 

achieved 100% accuracy. However, the proposed model 

requires larger datasets to obtain reliable evaluation results. 

In this study [14], Abdulmalik proposed a model to enhance 

the effectiveness of SQLI attack detection using ML techniques 

by combining Dynamic and Static Analysis. The model 

comprises three phases: Dataset, Static and Dynamic Analysis, 

and Model Construction. The Dataset phase involves inserting 

a record consisting of only symbols in every table of the 

database using a suggested algorithm. At the same time, a 

program is employed in the CGI interface to monitor all input 

queries. In the Static and Dynamic Analysis phase, semantic 

features are extracted, while in the Model Construction phase, 

ML algorithms such as Random Forest, Artificial Neural 

Network, Support Vector Machine, and Logistic Regression 
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are used to construct the model. Although the evaluation and 

validation of the proposed model are still in progress, the 

proposed method's performance will be evaluated based on 

Detection Overhead and Error Rate using a tenfold approach. 

In this paper, Morufu et al. [15] proposed a Naive Bayes-

based pattern recognition model for detecting and categorising 

SQLI attack types. The model was trained and evaluated using 

16,050 data instances that included both vulnerable and non-

vulnerable web pages. The evaluation was done using ML 

algorithms, and the validation was performed using 10-fold 

stratified cross-validation with 1-10 random seeds. The results 

showed a high accuracy rate of 98% for detection and 99% for 

categorisation. The model was compared to existing techniques 

and was found to perform better. 

Akinsola et al. [16] compared the performance of various 

supervised learning classification algorithms for binary 

classification using 10-fold cross-validation and hold-out 

methods. The tested algorithms included Logistic Regression 

(LRN), Stochastic Gradient Descent (SDG), Sequential 

Minimal Optimisation (SMO), Bayes Network (BNK), 

Instance-Based Learner (IBK), Multilayer Perceptron (MLP), 

Naive Bayes (NBS), and J48. The study found that the optimal 

algorithm cannot be chosen based on a single metric such as 

accuracy. In both hold-out and cross-validation methods, SDG 

and J48 performed equally well with 100% accuracy, followed 

by LRN. IBK had the lowest conceivable running time to build 

both at Hold-Out and 10-Fold Cross-Validation, with values of 

0.16 seconds and 0.06 seconds, respectively, and NBS had the 

next lowest total training time. 

T.P. Latchoumi et al. [17] propose using the Support Vector 

Machine (SVM) algorithm to prevent SQLI attacks in web 

applications. The system trains the SVM algorithm with all 

possible malicious expressions and generates a model that 

predicts whether a new query contains any malicious 

expressions. The attack signatures are identified as SQLIA 

tokens and SQLIA positive symbols, while legitimate requests 

take the form of expected data. The proposed system includes 

an admin and user login page for registration, and the admin 

can securely upload datasets for training. The paper also 

describes an Android application for household services that 

uses XML, Java, SQL, and Firebase connectivity. The 

implementation of the application required overcoming 

challenges in database connections, API design, and 

synchronisation. 

The paper by Kavitha et al. [18] proposes an unsupervised 

machine-learning approach to detect SQLI attacks in web 

applications using the K-Means clustering algorithm. The 

system consists of three steps: the URL intercept engine, 

context-free grammar for SQLI attacks, and pattern 

classification through ML. The first level uses predefined 

patterns created by context-free grammar, while the second 

level clusters patterns and classifies them into one of those 

clusters to avoid injection. The system is evaluated based on 

accuracy, response time, and time complexity and can detect 

three categories of SQLI attacks: boolean, piggy-backed, and 

union attacks. If an attack pattern is detected, the system 

prevents the query's execution. 

In their paper, Oudah et al. [3] explore the effectiveness of 

four ML models in detecting SQLI attacks using multi-

tokenisation levels. The proposed system involves data 

preparation, feature extraction, dataset splitting, model 

building, training, and testing. The study used a dataset of 

37,093 records of web requests and implemented different 

feature extraction levels such as word level, character level, 

and N-gram level. The results revealed that Extreme Gradient 

Boosting (EGB) had the highest recall and precision using 

word-level feature extraction, while the SVM model achieved 

the best accuracy using character-level feature extraction. 

Naïve Bayes was the fastest model, taking six milliseconds to 

train the classifier at the N-gram level and seven milliseconds 

at the word level, followed by eight milliseconds at the 

character level. The study encountered challenges in using 

NLP for text preprocessing for SQLI detection and identifying 

irrelevant text in the data that needed removal. 

Alkhatami & Alzahrani [19] investigate the detection of 

SQLI attacks using ML techniques, including K-Nearest 

Neighbors, Multinomial Naive Bayes, Decision Tree, and 

Support Vector Machine algorithms. The study focuses on 

detecting SQLI attacks in cloud computing platforms, where 

ML can offer superior detection methods compared to 

traditional approaches. The authors use a dataset of SQL 

queries and SQLI attack queries, which are preprocessed and 

feature-extracted before being used to train the ML model. The 

results demonstrate that the SVM algorithm achieves the 

highest accuracy of 99.42%, followed by the Decision Tree 

with an accuracy of 99.4%. In comparison, MNB and KNN 

algorithms have accuracy values of 97.09% and 92.45%, 

respectively. The proposed model achieves an average 

accuracy of more than 99% with a low error rate. 

Azman et al. [20] propose a signature-based SQLI detection 

system that utilises ML techniques. The system is trained on a 

dataset of benign and malicious web requests extracted from 

access log files, and its performance is evaluated on a separate 

testing dataset. The architecture of the proposed system 

includes three main functions, namely extraction, training, and 

detection. The access log file is extracted and divided into a 

training set and a test set. The training set is used to train the 

detector to create a knowledge base, which is then utilised to 

classify the test set into benign or malicious web requests. The 

tool extracts the URLs and queries from the access log file and 

converts them into sets of signatures for training and testing. 

The experimental results reveal high detection accuracy for the 

testing dataset, with a few false positives due to an inadequate 

number of signatures in the training set. 

In Farooq's paper [21], a model is proposed to detect SQLI 

attacks, which exploit database vulnerabilities. The model 

comprises four stages: dataset collection of SQLI attack queries, 

feature extraction and selection using tokenisation, training 

with 70% of the dataset, and testing with the remaining 30%. 

The study uses a manually collected labelled dataset of 35,198 

queries categorised into normal SQL queries, SQLI attack 

queries, and plain text with 21 features. The proposed model 

employs ensemble learning algorithms, including Gradient 

Boosting Machine, Adaptive Boosting, Extended Gradient 

Boosting Machine, and Light Gradient Boosting Machine. The 

model achieves over 99% average accuracy in detecting SQLI 

attacks with minimal error rate, with the best accuracy being 

0.993371 using a Light Gradient Boosting Machine. The 

proposed model is efficient in distinguishing SQLI attacks 
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from normal SQL queries and plain text, making it suitable for 

real-world detection systems. 

Mishra [22] used the Naïve Bayes ML approach for 

detecting SQLI attacks. She explained that this approach is 

simple to implement, requires fewer computational resources, 

and can be trained even on small datasets. However, it has the 

drawback of failing when a new type of SQLI is encountered 

for the first time. To address this, Mishra employed an 

ensemble learning technique to combine multiple models, each 

with its strengths and weaknesses, to reduce bias error and 

variance error and improve the model's accuracy and 

generalisation ability. Mishra trained her model on a dataset 

consisting of 6000 SQLI examples, including both plain text 

and SQLI data. To test the model's performance, the researcher 

used an open-source tool called Libinjection to generate 

additional SQLI examples. Mishra used tokenisation to 

preprocess the text-based dataset and performed feature 

extraction using the G-Test score for all token values. The 

resulting model achieved higher accuracy than the Naïve Bayes 

classifier but required more computational resources due to the 

use of a gradient-boosting classifier. 

Triloka et al., in their paper [23], tested five algorithms, 

including Naïve Bayes, Logistic Regression, Gradient 

Boosting, K-Nearest Neighbor, and Support Vector Machine, 

to detect SQLI attacks. The Support Vector Machine had the 

highest level of accurate detection, with a 99.77% detection 

accuracy and 0.00100 microseconds per query time. The study 

used natural language processing to increase detection 

accuracy. The researchers carried out five stages in producing 

the detection method, including data preparation, 

preprocessing and modelling, feature engineering, data training, 

and testing. The SVM algorithm had the highest level of 

accuracy, which was 0.9977 and proved reliable in detecting 

SQLI attacks. The optimisation stage increased the accuracy 

rate of SVM from 0.89 to 0.9977 with a margin of 6.5. SVM 

was proven reliable in detecting SQLI attacks. 

Uwagbole et al. [4] proposed a technique that utilises 

predictive analytics in big data to detect SQLI attacks in web 

requests. They built a dataset by extracting known attack 

patterns and trained a Two-Class Support Vector Machine 

(TCSVM) using supervised learning to classify requests. The 

injection point is identified after the WHERE clause in the SQL 

query. The technique achieved an accuracy of 0.986, precision 

of 0.974, recall of 0.997, and F1 Score of 0.985. The trained 

classifier can be deployed as a web service that is consumed by 

a custom .NET application implementing a web proxy API to 

intercept and accurately predict SQLIA in web requests, 

preventing malicious requests from reaching the database. The 

approach was tested on a web application, and empirical 

evaluations were presented in Confusion Matrix (CM) and 

Receiver Operating Curve (ROC). 

In this paper [8], Matin and Rahardjo propose an 

architecture for detecting malware using honeypots and ML. 

The proposed architecture consists of network components, 

routers, honeypots, data analysis, and a real system. Honeypots 

capture traffic packets and store them on an artificial server for 

analysis. The data analysis module uses supervised ML 

algorithms, including decision trees and support vector 

machines (SVM), to classify the captured packets as malware 

or benign. The architecture also includes a retraining process 

to improve malware detection accuracy. The authors used the 

EMBER dataset [24] and conducted cross-validation tests with 

a k-fold validation of 10 to evaluate the classifier algorithm's 

performance. 

Wang and Wang [25] propose a detection method for SQLI 

attacks based on the improved TFIDF algorithm and ML 

classifiers (SVM, KNN, and DT). The method analyses and 

compares a large number of attacks and normal SQL 

statements, summarising the characteristics of SQL statements 

and vectorising the text. The improved TFIDF algorithm is 

used in the data preprocessing stage, and three different 

classifiers are used in the classification stage. The results show 

that the improved TFIDF algorithm combined with SVM has a 

higher accuracy rate and a lower false alarm rate. The proposed 

method solves the problem of low detection accuracy when the 

number of sensitive and insensitive words is similar. The SVM 

algorithm has the best classification effect among the three 

classifiers tested. 

Overall, the reviewed studies have employed various ML 

models with distinct data preparation and text processing 

techniques. Fig. 3 depicts the frequency of each machine-

learning model used in these papers. 

TABLE II serves as a reference guide for summarising the 

reviewed papers, including the techniques used, publication 

dates, and limitations of each approach. It can be a valuable 

resource for researchers and practitioners working on the 

detection of SQLI attacks using ML. TABLE III provides a 

comprehensive summary of the evaluation metrics for each 

reviewed paper, including the ML models used, datasets 

utilised, and the accuracy, precision, and recall metrics for each 

model's performance evaluation in detecting SQLI attacks. 

Together, these tables offer an overall understanding of the 

various techniques and their effectiveness in detecting SQLI 

attacks using ML. 

 

 

Fig. 3 Frequency of ML models used in reviewed papers  
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TABLE II 

SUMMARY OF OTHER WORKS EVALUATION 

# Author(s) 
Publish 

Year 
Used Technique Limitation(s) 

1. 
Demilie & 

Deriba [9] 
2022 

The hybrid approach combines ANN, SVM, 

NB, DT, and RF 

The proposed system is limited to its dependence on the 

specific characteristics of the target system 

2. 
Krishnan et al.  

[10] 
2021 

Five machine learning algorithms: NB, LR, 

SVM, CNN, and PAC 

found that the Naive Bayes and SVM classifiers have 
relatively low accuracy rates compared to the other classifiers 

tested, which may limit their usefulness in certain applications 

3. 
Hernawan et al. 

[11] 
2020 

A combination of the SQLI Free Secure (SQL-

IF) method and the Naïve Bayes model 

The study only evaluates the proposed approach in a limited 

number of vulnerable web applications, so the results may not 
be generalisable to all web applications. 

The longer average load times for web pages due to increased 

checks and arithmetic operations may negatively impact user 
experience and website performance. 

4. 
Khanuja et al. 

[12] 
2021 

Utilised two Machine Learning algorithms, LR 

and NB Classifier 

The proposed system may not detect all vulnerabilities present 
in a web application, as vulnerabilities may exist in areas that 

are not referenced in collected URLs. 

5. Pham et al. [13] 2020 
The use of five machine learning models are 

NB, SVM, DT, LR, and EGB 

The proposed model should be tested with larger datasets to 
improve the reliability of the results. It also did not mention 

how to deal with new types of attacks and what types can be 

detected. 

6. Abdulmalik [14] 2021 

Used four different machine learning 

algorithms: Random Forest (RF), ANN, SVM, 

and LR. 

The paper did not present the results of this approach. 

Moreover, the models may not be capable of detecting unseen 
attacks with new semantic features that were not included in 

the training datasets. 

7. 
Morufu et al. 

[15] 
2018 Naive Bayes-based classifier 

The model is evaluated only on a single dataset of 16,050 

instances, which may not be representative of all possible 

scenarios. Thus, the generalizability of the model to other 
datasets is uncertain. 

8. 
Akinsola et al. 

[16] 
2020 

Various ML models included LR, Stochastic 

Gradient Descent (SDG), Sequential Minimal 
Optimisation (SMO), Bayes Network (BNK), 

Instance-Based Learner (IBK), Multilayer 

Perceptron (MLP), Naïve Bayes (NB), and 
J48. 

Compared to the performance of various supervised learning 

algorithms for SQLI detection, the study did not consider other 

factors, such as the size and diversity of the datasets, the 
complexity of the queries, or the impact of false positives and 

false negatives. 

9. 
Latchoumi et al. 

[17] 
2020 

The attack signatures are identified as SQLIA 

tokens and SQLIA positive symbols, while 
legitimate requests take the form of expected 

data, and SVM is used to classify user requests 

in real-time. 

The evaluation of the SVM algorithm is limited to testing on 

a single dataset. The system implementation is also limited to 
an Android application for household services, and it is 

unclear how well it would perform in other contexts or 

applications. 

10 
Kavitha et al. 

[18] 
2021 

An unsupervised machine learning approach 

that uses the K-Means clustering algorithm to 
detect SQLIA 

The evaluation is conducted on a limited number of SQLI 

attacks, and it is unclear how the proposed system would 
perform on a larger and more diverse dataset. 

11. Oudah et al. [3] 2022 
Applied four ML algorithms using different 
feature extraction TF-IDF levels 

More machine learning models should be compared with more 
feature extraction techniques. 

12. 
Alkhatami, 
Alzahrani [19] 

2022 

Focuses on detecting SQLI attacks in cloud 

computing platforms using K-NN, NB, DT, 

and SVM algorithms. 

The study's scope is limited to detecting SQLI attacks in cloud 

computing platforms, and therefore, the results may not apply 

to other types of web applications. 

13. 
Azman et al. 

[20] 
2021 

An updated Knowledge Base using machine 

learning. They used the Boyer’s Moore string 

matching algorithm to compare malicious 
features in log strings to detect injections. 

The paper's lack of clarity on the specific ML algorithms used 

and the relatively small size of the tested datasets are 

limitations. Additionally, caution should be exercised when 
examining user log files as they may impact server 

responsiveness. An accuracy of 100% could indicate 

overfitting, which should be considered when interpreting the 
results. 
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# Author(s) 
Publish 

Year 
Used Technique Limitation(s) 

14. Farooq [21] 2021 

The model uses ensemble learning algorithms, 

specifically Gradient Boosting Machine, 

Adaptive Boosting, Extended Gradient 
Boosting Machine, and Light Gradient 

Boosting. 

The use of a manually collected dataset may not accurately 

reflect all possible scenarios. Although the proposed model 
exhibited high accuracy on the testing dataset, it remains 

uncertain whether the model is overly specialised to the 

particular dataset employed in the study, raising the possibility 
of overfitting. 

15. Mishra [22] 2019 
Used ensemble ML Gradient Boosting 

algorithm. 

Ensemble Learning takes a longer time in the learning phase 
but gives better learning results. Also, the GB classifier 

achieves better accuracy than the NB classifier, but it needs 

more computational resources. 

16. 
Triloka, Hartono 

[23] 
2022 

Compared the use of five algorithms, 

including NB, LR, GB, K-NN, and SVM in 
SQLI detection 

It only evaluates the proposed approach in a limited number 

of vulnerable web applications, so the results may not be 
generalisable to all web applications. 

17 
Uwagbole et al. 

[4] 
2017 

A web proxy API system that intercepts 

requests and checks user requests using a 
trained SVM classifier 

The proposed technique is tailored to a specific web 

application and database system, which limits its 
generalizability to other systems. 

18 
Matin & 

Rahardjo [8] 
2019 

Proposed to use ML SVM and DT models 

integrated with honeypot to detect malware 

attacks based on malware features and 
behaviours. 

The paper just mentioned the architecture of the proposed 

approach and did not show experiment results. 

19 
Wang & Wang 

[25] 
2022 

Used honeypots and analysed them using 

machine learning algorithms such as Decision 
Tree and Support Vector Machine (SVM). 

The small dataset used may not represent all possible SQLI 
attacks and could limit the generalizability of the proposed 

detection method. Additionally, the architecture of the 

proposed approach was not presented. 

 

TABLE III 

SUMMARY OF OTHER WORKS EVALUATION 

Ref. ML Algorithm(s) 
Dataset 

Size 

Evaluation 

Accuracy Precision Recall 

[9] 

NB 

54, 306 

87.2 0.875 0.863 

DT 94.8 0.917 0.908 

SVM 97.3 0.964 0.956 

RF 93.4 0.943 0.930 

ANN 98.7 0.988 0.991 

Hybrid 99.4 0.992 0.994 

[10] 

NB 

* 

95 0.85 0.98 

LR 92 0.97 0.76 

CNN 97 0.92 0.96 

SVM 79 1.0 0.20 

Passive Aggressive 79 1.0 0.20 

[11] NB 250 90 * * 

[12] 
LR 

92 * * * 
NB 

[13] 

NB  

1,483 

77 0.71 0.46 

LR 100 1.0 1.0 

SVM 57 0.57 0.0 

RF 100 1.0 1.0 

EGB 100 1.0 1.0 

[14] 
RF 

* 
* * * 

ANN * * * 
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Ref. ML Algorithm(s) 
Dataset 

Size 

Evaluation 

Accuracy Precision Recall 

SVM  * * * 

LR * * * 

[15] NB 16,050 98 * * 

[16] 

  
10-Fold Cross-

Validation 
Holdout-70   

LR * 99.02 99.99 * * 

Stochastic Gradient Descent (SDG) * 99.99 100 * * 

Sequential Minimal Optimisation (SMO) * 99.98 99.98 * * 

Bayes Network (BNK) * 99.70 99.70 * * 

Instance-Based Learner (IBK) * 99.99 99.98 * * 

Multilayer Perceptron (MLP) * * * * * 

NB * 99.38 99.41 * * 

J48 * 99.99 100 * * 

[17] SVM * * * * 

[18] K-Means clustering  * * * * 

[3] 

NB 

37,093 

99.3 0.994 0.991 

LC 99.2 0.994 0.988 

SVM 99.7 0.997 0.995 

EGB 99.5 0.996 0.992 

[19] 

K-NN 

6,184 

92.45 * * 

NB 97.09 * * 

DT 99.4 * * 

SVM 99.42 * * 

[20] * 

58 93 * * 

57 100 * * 

58 100 * * 

57 100 * * 

56 100 * * 

[21] 

GB 

35,198 

99.1 0.991 0.990 

Adaptive Boosting 99.1 0.990 0.989 

EGB 99.2 0.991 0.990 

Light Gradient Boosting 99.3 0.993 0.993 

[22] 
NB 

3,707 
92.8 * * 

GB 97.4 * * 

[23] 

SVM 

33,727 

99.7 * * 

K-NN 99.7 * * 

LR  99.6 * * 

GB 99.4 * * 

NB 97.5 * * 

 [4] SVM 479,000 98.6 0.974 0.997 
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Ref. ML Algorithm(s) 
Dataset 

Size 

Evaluation 

Accuracy Precision Recall 

[8] 
SVM 

900,000 
* * * 

DT * * * 

[25] 

SVM 

3000 

* 0.990 0.992 

DT * 0.982 0.976 

K-NN * 0.982 0.982 

* Means not mentioned 

 

The studies have employed different ML practices such as 

dataset collection, feature extraction, training, and testing 

with different ML algorithms.  

Results show that these techniques have achieved high 

levels of accuracy in detecting attacks and reducing false 

positives. The SVM algorithm is the most effective in 

detecting SQLI attacks, while Naïve Bayes and Ensemble 

Learning techniques have also been shown to improve 

detection accuracy. 

V. CONCLUSIONS 

In conclusion, this literature review provides an overview 

of several studies on the use of ML for detecting SQLI attacks 

and malware. The studies presented here use a variety of 

approaches, including different algorithms, dataset sizes, and 

feature selection techniques to achieve high detection 

accuracy rates. 

Upon reviewing these studies, we have identified three key 

findings that hold significant implications for future research. 

Firstly, the proposed techniques emphasise the importance of 

dealing with passed SQLI queries in web requests, 

particularly when system developers fail to handle requests 

before accessing the system database because certain 

techniques focus on identifying SQLI attack signatures or 

predefined patterns in user logs to prevent injection requests. 

So, by failing to handle these queries adequately, there is a 

possibility that some threats could be passed through, posing 

potential risks to the system's security. The second key finding 

is that the size and quality of the training dataset significantly 

impact the detection accuracy. It has been observed that a 

larger and higher-quality dataset leads to an improved ability 

to accurately identify SQLI attacks. Lastly, combining 

multiple ML models has demonstrated an increase in 

detection accuracy. By leveraging the strengths of various 

models, researchers have achieved higher levels of accuracy 

in detecting SQLI vulnerabilities. 

As a way forward, it is imperative for future research to 

target specific facets of SQLI attack detection and prevention. 

This includes addressing evasion-centric attack patterns and 

behaviour-related anomalies, refining approaches to manage 

encoding-driven attacks, and augmenting dataset quality by 

establishing accessible public repositories. Furthermore, the 

exploration of hybrid machine-learning models and the 

development of innovative, behaviour-centric techniques for 

real-time detection is critical. Such concerted efforts will be 

pivotal in advancing the field, keeping abreast of the 

constantly evolving landscape of SQLI threats, and bolstering 

the effectiveness of cybersecurity strategies. 
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